s X3

e

e,

Rk i

¥
13

DOC FILE. P

~ (DLRVEL”

7

FRANK J. SEILER RESEARCH LABORATdRY

F TSRL-TR-77- ;d15

g

/ DECHS7

A

J&p

-
R

.' )
ot
2055
000
..“‘

ACH
R

Q
%G

%,

&/ JIGHER QRDER GASDYNAHIC THEORY
OF SHOCK STRUCTURE.

&
X
",
%
“
x5
O

-

D G\

NOV 1 1918
LU L
B

Lt Cov CHARLES E. /§1M0N
¥

,/ 7 APPROVED FOR PUBLIC RELEASE;
“““““'""““‘"\ F DISTRIBUTION UNLIMITED,
&
2397

PROJECT

AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

5
Welele!
S22
0"0‘0"’ S
""o}’.":"'-

3,
P
A
oy
&
o
.
::_‘;2 2
e
Wk




FJSRL-TR~-77-0015

This document was prepared by the Mechanics Division, Directorate of Aerospace
Mechanics Sciences, Frank J. Seiler Research Laboratory; United States Air Force
Academy, CO. The research was conducted under Project Work Unit Number 2307-F1-
30, Theoretical and Experimental Investigation of Shock Structure. Lt Col Charles
E. Simon was the Project Engineer in charge of the work.

When US Government drawings, specifications or other data are used for any pur-
pose cther than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever, and
the fact that the govermment may have formulated, furnished or in anyway supplied
the said drawings, specifications or other data is not to be regarded by impli-
cation or otherwise, as in any manrer licensing the holder or any other person

or corpo.-ation or convey any rights or permission to manufacture, use or sell any
patented invention that may in anyway be related thereto.

" Inquiries concerning the technical content of this document should be addressed
to the Frank J. Seiler Research Laboratory (AFSC), USAF Academy, CO 80840. ‘hone
AC 303 472-3122,

This r:port has been reviewed by the Chief Scientist and is releasable to the
National Technical Information Service (NTIS). At NTIS it will be available to
the general public, including foreign natioms.

This technical report has been reviewed and is approved for publication.
ﬂ/ » )
vﬁwé‘Jﬂw’c / 4 s

CHARLES E. SIMON, Lt Col, USAF JOSEPH 5. FORD, II, Lt Col, USAF
Project Engineer : Dir, Directorate of Aerospace~-

. Mechanics Scilences

M. D. BACON, Colonel, USAF
Commander

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, ox notice on a specific document.

Printed in the United States of America. Qualified requestors may obtain addi~
ticnal copies from the Defense Documentation Center. All others should apply to:

National Technical Information Service
62835 Port Royal Road
Springfield, Virginia 22161




&
P

'
e

4

SECURITY CLASSIFICATION OF THIS PAGE (When Daeta Entered)

READ INSTRUCTIONS
1. REPORT NUMBER / 2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER
FJSRL-TR-77-0015 ADA '
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Higher Order Gasdynamic Theory of Shock Structure Technical Report

i _January 1973 - August 1977
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(Y)
Charles E. Simon

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
F. J. Seiler Research Laboratory (FJSRL/NA) AREA & WORK UNIT NUMBERS

Air Force Systems Command 61102F/2307/F1/30

U.S. Air Force Academy, Colorado 80840 e )

11, CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE /

F. J. Seiler Research Laboratory (FJSRL/NH) December 1977

Air Force Systems Cormand 13 NUMBER OF PAGES

U.S. Air Force Academy, Colorado 80840

‘4, MONITORING AGENCY NAME & ADDRESS(/! dilferent {rom Controlling Office) 1S. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

DDC
[] |]EI]£][ZEEF"

NOV 1 1978

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

{

18. SUPPLEMENTARY NOTES m

19. KEY WORDS (Continue on reverse aiae il necessary and identlty by block number)

Shock Structure Normal Shock Wave
Maxwell Gas Perturbation Methods
Boltzmann Equation Asymmetry Quotient
Chapman-Enskog Development Density Profile

Temperature Profile

20 ABSTRACT (Continue on reverse side If necessary and Identify by block number)
This document is the final report concerning the theoretical investigation of the

structure of a normal shock wave in a gus composed of Maxwell molecules. The
higher order gasdynamic differential equations for the shock structure are
derived from this Boltzmann equation through fourth order in spatial derivatives
(Super-Super-Burnett Order). The derivation employs a simplified version of the
well known Chapman-Enskog development. Perturbation methods are used to find
approximate solutions for the Super Burnett (third order) and Super-Super-Burnett

(fourth order) equations which are not amenable to numerical integration by

DD , ';2:*;3 1473 EDITION OF 1 NOV 65 IS OBSOLETE \[

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

uconventional techniques.

The perturbation methods are shown to produce satisfactory approximate solutions
for the Navier-Stokes and Burnett equations which are amenable to numerical

integration. The higher order gasdynamic corrections to the N vier-Stokes shock
structure for a Maxwell gas are shown to be qualitatively similar to the discre-
pancies between experimental results and the Navier-Stokes shock structure for a
realistic intermolecular potential..-

)\

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




PREFACE

This research was initiated in 1972 during the author's final year of
residence at the University of Colorado, Boulder, Colorado. The work was
undertaken as partial fulfillment of the requirement for a Doctor of Philosophy
degree in Aerospace Engineering Sciences at the University of Colorado.

The major portion of the research was completed while the author was assigned
to the Frank J. Seiler Research Laboratory (AFSC). The computational effort was
accomplished primarily at the Education and Rzgearch Computer Center facilities
of the United States Air Force Academy.

The perturbation technique used in this research was pursued sufficiently
to reveal a more simplified procedure for rapid recovery of the coefficients
which must be calculated in the derivaticr of the perturbation equations. The
original procedure tor these calculations required an extensive period of tedious
effort to produce the perturbation expressions through fourth order in successive
approximation. The revelation of the simplified procedure made it possible to
reproduce the first four orders of results in significantly reduced time as well
as calculate an additional five orders for the perturbation equations.

This report documents those results obtained from the initial effort to
derive the first four orders in the expansion employing the original perturbation

computational methods.
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CHAPTER I
INTRODUCTION

The structure of a normal shock wave in a monatomic gas has
been investigated extensively by theoreticians and experimentalists
v for many years. The shock wave may be represented as a one dimen-
sional gasdynamic phenomenon in which large departures from thermo-
dynamic equilibrium occur over a few mean free paths within the
shock wave. The one dimensional shock wave should be completely
described by the Boltzmann equation, if the Boltzmann equation is
. correct. But, because of the nonlinearity and complex nature of the
collision integral, trustworthy solutions of the Boltzmann equation
have beer obtained only in cases close to equilibrium, and certainly
not for strong shock waves.l
This effort is a theoretical investigation of the higher

order gasdynamic equations for shock wave structure obtained by

applying the well known Chapman-Enskog development to the Boltzmann

h equation through fourth order in spatial derivatives. The motivation

1The relative change in macroscopic variables over a local
mean free path becomes appreciable even for modest upstream Mach

numbers (M,). For example, for M, = 1.5 the relative change in
macroscopic variables over a local mean free path is less than 0.1,
but for M, = 2,5 the relative change in macroscopic variables over

a local méan free path exceeds 0.4 in the interior of the shock
wave. These estimates are based on numerical integration of the
Navier-Stokes differential equations.




of this work is t» strive toward a test of the nonlinear features of
the Boltzmann equation, which has not been done before. The
Chapman~Enskog development has been used because it has been shown
to have quantitative physical significance beyond the Navier-Stokes
level in studies of high frequency sound propogation.2

An addilional motivaticn for using the Chapman-Enskog
development has been the desire to reconcile conflicting opinions
in the literature about its utility drawn from studies of high
frequency sound waves3 and weak shock waves.4

The gasdynamic equations derived and investigated in this
report are for a gas of Maxwell molecules (iaverse fifth power
repulsion). The restriction to Maxwell molecules affords consider-
able mathematical simplification in the Boltzmann collision
operator. Although such an idealized molecular model has analytical

advantage, it cannot be expected to lead to decisive comparision

with experiment. Nevertheless, it seems reasonable to hope that
results for shock waves in a gas of Maxwell molecules may provide
qualitative insights and guides to future work with a realistic

potential, for such correspondence has been found for other phenomena.

L5 e

2
. “J. D. Foch Jr and G. W. Ford, in Studies in Statistical
; . Mechanics, edited by J. de Boer and G. E., Uhlenbeck (North Holland,
h Amsterdam, 1970), Vol. V.
3

C. S. Wang Chang and G. E. Uhlenbeck, in Studies in Statis-
tical Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North
Holland, Amsterdam, 1670), Vol. V.

4L. Talbot and F. S, Sherman, NASA Memorandum 12-14-58W
(1959); F. S. Sherman and L. Talbot, in Proceedings of the First
International Symposium on Rarefied Gas Dynamics, edited by F. M.
Devienne (New York: Pergamon, 1950), 161,
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The Chapman-Enskog expansion applied to the Boltzmann
equation yields successively the Euler (zeroth order), Navier-
Stokes (first order), Burnett (second order), Super-Burnett (third
order), Super-Super-Burnett (fourth order), ..... gasdynamic
differential ~quations,

The derivation and solution of the Navier-Stokes equations
are well documented in the literature.S Gilbarg and Paolucci6
successfully iIntegrated the first order equations, thus providing a
practical method for constructing shock profiles from the differ-
ential equations. Standard Runge-Kutta numerical integration
methods yield results for the variation of gas properties through
the shock for any ‘incident Mach number (Ml).

The results of similar efforts applied to the Burnett differ-
ential equations were reported by Sherman and Talbot,7 who found that
numerical integration was successful only for Mach numbers less than

about 2.1.8 One of the early findings in the present work was that

5S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Third edition, Cambridge University Press,
1970); W. G. Vincenti and C. H. Kruger Jr., Introduction to Physical
Gas Dynamics (John Wiley & Sons, 1965); L. M. Schwartz and D. F.
Hornig, Physics of Fluids 12, 1669 (1963); D. Gilbarg and D.
Paolucci, Journal of Rational Mechanics and Analysis 2, 617 (1953).

6Gilbarg and Paolucci, Journal of Rational Mechanics, op.
cit.

7Talbot and Sherman, NASA Memorandum, op. cit.; Sherman
and Talbot, Proceedings of the First International Symposium, op.
cit.

8The equations used by Sherman and Talbot cerutain an error,
but the error has negligible effect on their results. In the expres-
sion for P,y On Page 28 of reference 2, and again on page 164 of

reference 3, the coefficient of (u2/p)°(du/dx)2 is 40/27; it should
be 8/9.
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the Super-Burnett and Super-Super-Burnett equations are not amenable
to conventional methods of numerical integration for any Mach number.
Nevertheless, Montgovnery9 has reported a proof of the existence of
shock wave solutions for the higher order gasdynamic equations for
Mach numbers close to unity, although the uniqueness of these solu-
tions 1s not yet established.

Recent experimental findings of Alsmeyer10 and earlier
findings of Schmidtll provide evidence of the inadequacy of the
Navier-Stokes equations for describing shock wave structure. The
discrepancy between the first order Navier-Stokes theory and experi-
ment becomes conspicuous when the asymmetry Qp of the normalized
density profile Rp(z) is examined as a function of Mach number Ml'
Following the conventions of Schmidt and Alsmeyer, Rp(z) and Qp are

defined according to the following relationships:

R p(z)_pl l
p(Z) = —E;:BI_ (I-1)
(o]
JIR (z)]dz
= TP (1-2)

P (1R (2)]dz

In equation (I-1) the subscript 1 corresponds to conditions far
upstream of the shock wave, and the subscript 2 corresponds to

conditions far downstream of the shock wave. This notation and the

9J. T. Montgomery, Physics of Fluids 18, 148 (1975).

lOH. Alsmeyer, to be published in Journal of Fluid Mechanics.

11y schmidt, Journal of Fluid Mechanics 39, 361 (1969).
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choice of the origin of the coordinate system at the center of the

density profile (Rp = 0,5) are illustrated in Figure 1.

R (2)
1.0f~—mm=mmmm=—o==
0.5
! )
— —=
pl’Tl pz’ 2
0 z

Figure 1 ~ Characteristic variation of the normalized density
across a normal shock wave.

The Navier-3tokes theoretical result for Qp based on a

realistic potential (viscosity p « TO'68

) and the data from electron
beam measurements of Rp(z) (Schmidt 1969, Alsmeyer 1975) are plotted
versus the upstream Mach number Ml in Figure 2. 1t is quite evident

from Figure 2 that the Navier-Stokes theory gives unsatisfactory

results even at low Mach numbers.

The failure of numerical integration methods to provide
solutions to the higher order gasdynamic differential equations
necessitated the development in this effort of an analytic (pertur-
bation) method to obtain the solutions. The gas properties were
sought as perturbation expansions, with the expansion parameter a
suitable function of the shock Mach number. These perturbation
methods were applied to yield successive approximations for gas
property variations across the shock.

The numerical integration solutions for the Navier-Stokes and

Burnett equations served as test cases for the perturbation
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expansions. Reasonable agreement between the results of the two
approaches was obtained for the Navier-Stokes and Burnett equations
and this agreement served as the rationale for carrying out the
perturbation calculations for the higher order gasdynamic equations.

In addition to the authors already mentioned, some additional
references are appropriate here to cite other theoretical and experi-
mental efforts of relevance to this report. No attempt will be
made to give an historical account of the extensive efforts of the
many investigators of shock wave structure. For such an account,
the reader is referred to a stimulating and thorough publication by
Fiszdon12 containing an extensive bibliography of some 150 theoreti-
cal and experimental references on the subject. In his paper,
Fiszdon classifies the theoretical attempts to obtain solutions for
shock structure as a) Continuum Gas Theories, b) Kinetic Models of
the Boltzmann Collision Integral, c¢) Kinetic Models of the Distri-~
bution Functions, d) Monte Carlo Methods.

In the first theoretical class, the principal method is the
application of the Chapman-Enskog development to the Boltzmann
equation to obtain the constitutive gasdynamic relations for shick
structure, In the second class, the BGK method13 is one of the best

known efforts to develop a simplified model of the Boltzmann

lzw. Fiszdon, in Proceedings of the Ninth International
Symposium on Rarefied Gas Dynamics, edited by E. Becker (Academic
Press, 1974) 2, B.23,

13P. L. Bhatnagar, E. P. Gross, and M. Krook, Physical
Review 94, 511 (1954).




collision integral. However, as Alsmeyer14 reports, experimental
results show clearly the failure of the BGK solutions even for low
Mach numbers.

The bimodal velocity distribution function introduced by
Mott—Smith15 and the subsequent shock thickness calculations of
Muckenfuss16 are characteristic of the kinetic model investigations
in the Lhird theoretical cless. The Mott-Smith method yields
symmetric density profiles at all Mach numbers, whereas the experi-
mental density profiles are asymmetric for all Mach numbers.

In recent years, some of the most interesting studies of shock
structure have centered on the development of Monte Carlo techniques
in an effort to find a solution of the complete Boltzmann equation.

Hicks and Yen and their associates 17 have used Nordsieck's Monte

Carlo method18 to "solve" the Boltzmann equation for the plane steady

l[‘Alsmeyer, op. cit.

lSH. M. Mott-Smith, Physical Review 82, 885 (1951).

16C. Muckenfuss, Physics of Fluids 5, 1325 (1962).

l7A. Nordsieck and B. L. Hicks, in Proceedings of the Fifth
International Symposium on Rarefied Gas Dynamics, edited by C. L.
Brundin (Academic Press, 1967) 1, 695; S. M. Yen, Physics of Fluids
9, 1417 (1966); B. L. Hicks and S. M. Yen, Physics of Fluids 10, 458
(1967); T. Holtz, E. P. Muntz, and S. M. Yen, Physics of Fluids 14,
545 (1971); S. M. Yen, International Journal of Heat and Mass Trans-
fer 14, 1865 (1971); B. L. Hicks, S. M. Yen, and J. Reilly, Journal
of Fluid Mechanics 53, 85 (1972); S. M. Yen, W. P, Walters, W. Ng,
and J. R. Flood, in Proceedings of the Eighth International Symposium
on Rarefield Gas Dynamics, edited by K. Karamcheti (Academic Press,
1974) 1, 137; S. M. Yen, W. Ng, R. M. Osten, and W. P, Walters,
Coordinated Science Laboratory Progress Report, July 1971 through
June 1972, August 1972; S. M. Yen and W. Ng, Journal of Fluid Mechanics
65, 127 (1974).

l8Nordsieck and Hicks, op. cit.




19 has developed a Monte

shock wave. In an independent effort, Bird
Carlo direct simulation method or numerical experiment in which he
tracks, in physical space, the motions and interactions of the mole-
cules across the shock. Bird20 has claimed that his direct simulation
method is entirely consistent with sclving the Boltzmann equation.

The manifestly different stochastic techniques called Monte
Carlo methods by Hicks, Yen and associates and by Bird yield substan-
tially different quantitative results for the density profiles for
both elastic spheres and Maxwell molecules. This conspicuous differ-
ence 1n the results for each or the molecular models 1is clearly
illustrated in the reference321 and is attrabuted tu the differences
in the Monte Carlo method used.

The Monts .drlo methods have been reported to give the best
agreement with experiment. In addition to the elastic sphere and

Maxwell molecule data calculated by Hicks, Yen (et al.) and by Bird,

«  Bird's method has been used to calculate shock profiles for a number

of other repulsive intermolecular potentials. Schmidt22 reported

k excellent agreement between his experimental results in argon and

19, A. Bird, Physics of Fluids 6, 1518 (1963); G. A. Bird,
in Proceedings of the Fourth International Symposium on Rarefied
Gas Dynamics, edited by J. H. de Leeuw (Academic Press, 1965) 1,
216; G. A. Bird, Journal of Fluid Mechanics 30, 479 (1967); G. A.
Bird, in Proceedings of the Sixth International Symposium on Rarefied
Gas Dynamics, edited by L. Trilling and H. Y. Wachman (Academic Press,
1969) 1, 301; G. A. Bird, Physics of Fluids 13, 1172 and 2676 (1970).

20

Bird, Physics of Fluids 13, op. cit.

21W. Fiszdon, op. cit.; Yen and Ng, op. cit.

22Schmidt:, op. cit.
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Bird's inverse twelfth-power force data at one Mach number (M1 = 8.0).
In later experiments, Alsmeyer23 indicates excellent agreement
between his experimental data and the Bird Monte Carlo calculations
for the inverse tenth-power force data for the complete range of

Mach numbers up to Ml = 9.0. Alsmeyer also suggests that it is
reasonable to expect improved results from the Hicks and Yen method
for more realistic intermolecular potentials.

In a recent effort to infer the intermolecular potential
from shock structure, Sturtevant and Steinhilperz4 determined
intermolecular potential parameters for four monatomic gases from
accurate shock tube experiments using Bird's Monte Carlo results.

The results indicate that the profiles are generally insensitive to
different potentials at high Mach numbers. Reliable results at
low Mach numbers are not yet available.

The present efforts to derive and solve higher order gas-
dynamic equations of shock structure will be discussed briefly to
summarize the developments given in the succeeding chapters of this
report.

Chapter II includes the derivation of the higher order differ-
ential equations for the density (or velocity) and temperature as func-

tinns of distance through the shock wave. The conservation equations

23Alsmeyer, op. cit.

24B. Sturtevant and E. A. Steinhilper, in Proceedings of the
Eighth International Symposium on Rarefied Gas Dynamics, edited by
K. Karamcheti (Academic Press, 1974) 1, 159,
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are given for conditions inside the shock and the higher order
constitutive relationships are obtained from the Chapman-Enskog
expansion applied to the Boltzmann equation. The derivation of the
differential equations in each spatial order involves the deter-
mination of the corresponding heat flux and viscous stress contri-
butions. The highest order of the spatial derivatives determined

in these contributions specify the order of the corresponding differ-
ential equations.

Chapter III includes methods to solve the Navier-Stokes
equations of shock structure. The standard numerical integration
methods are presented, followed by the introduction of the perturba-
tion technique which was developed to obtain solutions of the higher
order differential equations. The perturbation method, though not
specifically required to provide solutions of the Navier-Stokes
equations, is introduced in Chapter III because the rationale for
its applicability to the higher order developments is the same as
that applied to the Navier-Stokes equations.

Chapter IV provides a discussion of the limitations of
standard numerical integration methods in the Burnett and higher
order developments. The results of the higher order perturbation
calculations are presented, and a pattern is discerned among the
resulting equations which reveals a formal similarity among the
Navier-Stokes and higher order results.

In Chapter V, shock profiles obtained from the numerical

integration and perturbation methods are presented and compared.

. e T A TR,
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The utility of the perturbation method is evident from the relative
agreement between the results of the two methods in the Navier-
Stokes and Burnett (Ml<2.l) developments.,

Chapter VI provides a qualitative look at the present theo-
retical results for Maxwell molecules in light of recent experimental
"findings. The potential need and means for extending the pertur-
bation method to higher orders are discussed as an outlook for future

work.




CHAPTER II

HIGHER ORDERS OF THE CHAPMAN-ENSKOG
DEVELOPMENT FOR MAXWELL MOLECULES
Conservation Equations for the Steady State
One Dimensional Normal Shock Wave

The higher order gasdynamic equations for a Maxwell gas will
be derived from the Boltzmann equation in this chapter as a first
step in the calculation of the structure of a normal shock wave.
The derivation is patterned after the well known Chapman-Enskog
development for solving the Boltzmann equation in successive approxi-
mation.

The starting point for the Chapman-Enskog development is the
Boltzmann equation for the velocity distribution function f(;,z,t),

3 .
5% = - v, ;Li— + d31fdszgo(g,x)[f'fl - £f,]. (11-1)
iV

The first term on the right gives the rate of change of molecules

of velocity class v which are contained in a specific volume element
of physical space with velocity in a specific volume element of
velocity space due to free flight. The integral on the right-hand
side provides the rate of change of molecules of velocity class v
due to collisions with other molecules. The integral sum of all
encounters with molecules (specified as class vl) includes the

collisional processes which either replenish or deplete the molecular
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count in the volume elements of the physical and velocity space. The
velocity distribution functions f and f1 in the collision integral
are representative of conditions both prior to (unprimed) and after
(primed) collision.

In the collision integral g is |3 - 31l, and 0(g,X) is the
differential cross section for aa encounter in which the relative
velocity vector is turned or s.attered through an angle ¥ into the
element of solid angle dfi. For a gas consisting of atoms of mass
m interacting with an intermolecular potential ¢(r) = J%; the

r

expression for the cross section is written as
L
2K, 2
go(g,x) = (77 F(x). (11-2)

Such a (fictitious) gas was considered by Maxwell, and is referred
to as the Maxwell model,

To develop the Chapman-Enskog expansion for departures from
the equilibrium condition, the velocity distribution function is

sought in the form

(0) (1) (2)

f =1 + f + f

(0)

4 sesee (11—3)
(D

where f is the local Maxwell distribution,

ey

is proportional

to spatial derivatives, is proportional to squares of spatial

derivatives and second derivatives, c¢tc. The local equilibrium

(0)

distribution f is given by

3
), n(ﬁiﬁ)z exp{~ == & - 0)%) (11-4)

£ T

where m is the molecular mass, n is the local molecular number den-

sity, T is the local gas temperature, and k is Boltzmann's constant.




PR

15

The expression (3 - :) is called the peculiar or thermal
veiocity of the gas, is denoted by 3, and 1s equal to the difference
between the molecular velocity (;) ani the mean flow velocity of the
molecules (K). The combination (i%éﬂi has dimensions of (1/velocity)
aud will be employed frequently in nondimensionalizing velocity terms
throughout this work.

Using the Boltzmann equation, as presented above, and taking
moments with respect to v of 1, v, and % v2 yields the one-dimensional
conservation equations for the normal shock wave. The mean gas flow
direction 1s taken along the Z-coordinate. Detailed treatments of

the moment calculations are plentiful in the 1iteraturel and will not

be repeated in this report. The results are given below.

MASS:

dn an du _

§?+ua—z~+ngz-—0 (11-5)
MOMENTUM:

du du 1 0P

3t+uaz+;\_n—\5”z~=o (II-6)
ENERGY:

3o AT, 9T . dg, ,0u_ )

sk Gprug)+ 5P, 0 (11-7)

1

J. D. Foch Jr. and G. W. Ford, in Studies in Statistical
Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North Holland,
Amsterdam, 1970), Vol. V; S. Champmanand T. G. Cowling, The
Mathematical Theory of Non-Uniform Gases (Third edition, Cambridge
University Press, 1970); W. G. Vincenti and C. H. Kruger Jr.,
Introduction to Physical Gas Dynamics (John Wiley & Sons, 1965).
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In these equations

La~]

i

"

S

Q.
<¥
Hh
3
<3

P (z,t) = (11-8)

and

!
S
=9
<3
rh
{
<l
<3

q (z,t) = (11-9)

=]
i}

where P is the pressure minus the viscous stress and q is the heat
flux.

The steady state equations for a normal shock wave are easily
found from the above by neglecting the time derivatives and noting
that the momentum equation can be used in the energy equation to form
an exact energy differential equation. Since, in steady state, all
three differential equations are exact, each equation can be inte-

grated once to give the results below.

MASS:
pu = pu, (1I-5a)
MOMENTUM:
pu2 + P =p u2 + n kT (11-6a)
i i1
ENERGY :
2 u
3k, v sk L _
[2 ol U z]pu +uP +q = {2 e 2]piui (1I1-7a)

In these equations £ 1s the mass density. The quantities on the
right-hand sides of the equations are integration constants, evalu-
ated either upstresm (i = 1) or downstream (i = 2), which represent
the coustant fluxes of mass, momentum, and energy. Equations
(II-5a), (II-63), and(II-7a) describe the shock wave illustrated in

Figure 1.
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Alternate Forms of the Viscous Stress and Heat
Flux for the Higher Order Devzlopments

The uniformity expansion for the velocity distribution
function induces uniformity expansions for the heat flux a4y and
stress Pij’ which reduce in the one-dimensional case to q, and Pzz’
or simply q and P. Following methods employed in the Chapman-
Enskog solution of the Boltzmann equation, the velocity distribution

function is further defined in the following expanded series form:

+

f(o), which implies q = 0 and P = nkT, and the

In zeroth order, f =
conservation equations reduce to the equations of equilibrium flow,
The inclusion of the higher order contributions to f leads to the
Navier-Stokes, Burnett, and higher order macroscopic equations of
gas dynamics.

Again following Chapman and Enskog, the following require-

ments will be imposed in the development:

fave™ =0, w1 (11-11)
fd;f(n)vz =0, w1 (11-12)
jd3f(“)v2 =0, n>l. (11-13)

These requirements are consistent with the equilibrium solution but

are not necessitated by it. The requirements will introduce some

+Note: For clarity in expressing the results of the moment
calculations throughout the remainder of this chapter, the arguments
(v) and (v,) for the velocity distribution functions have been
omitted in the equations.
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very effective simplifications in the host of moment calculations
which are required to determine the gasdynamic forms of P and q.
It is convenient to express the integral requirements (II-11),

(11-12), and (II-13) in terms of the peculiar velocity V:

fa3e™ <0, w1 (1I-11a)

[aveTF = 0, w1 (11-12a)
{n)

fa¥e'v = 0, o1, (11-13a)

Introducing the expanded form for the velocity distribuvtion

function in (II-8) and (II-9), the latter expressions give

p=akr+p 4 p® 4 pO) L (11-14)
q = q(l) + q(z) + q(3) + ceees, (11-15)
where
‘ p() - fd?f(“)mvi, n>1, (11-16)
o™ = fave (™ %-vzvz, n>l, (11-17)

With the aid of (I’~12a) and (I1I-13a) the expressions for (II-16) and

(I1-17) may also be written in the form

: 2

: () 2 rge@ L1342 _ Y -

: p = 5 fave m[2 v, -3 ], (11-18)
o™ < - fale®™ 3 [% v, - vzvz}, (11-19)

where the equality of d3 and av in velocity space has been employed.

PRI v S Ry

yomar

The velocity forms in (II-18) and (II-19), nondimensionalized by

factors of [52512, are eigenfunctions associated with the linearize.l

PRGNS < * Aotrginde L

collision operator for Maxwell molecules. These and other
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eigenfuctions (and their eigenvalues) are tabulated in Appendix A,

Y
Using g = {E%T}L 6 and the notation of Appendix A leads to
p™ & er L fad e 6™y & (11-20)
3% 30 02> -
1
2 2
(n) _ 2kT 1 + =c“ (n) ->
q = nkT[—;—} ;375-fdc e ¢ Wll(c). (11-21)

! Spatially Ordered Equations Derived from the
Expanded Velocity Distribution Function
Applied to the Boltzmann Equation

The developments which follow in the remaining sections of
this chapter involve solution of the Boltzmann equation using the

expanded form of the velocity distribution function through

, but only to the extent necessary to determine P

(4) (4)

and q through P and q .

In applying the full Chapman-Enskog method to the solution

of the Boltzmann equation, the usual procedure is to substitute

expanded forms of the velocity distribution (i.e., f = f(O)

o O, )

L

+ £'77, *++ etc.) into both sides of the equation and,

(n)

in successive approximation, solve for the ¢ . Subsequently, the

(n) (n)

¢(n) and ¢ .

are used in the integrals which define P
The present effort has been designed to circumvent complete

(n)

determination of the ¢ °, since the required expressions for the
viscous stress and heat flux contributions may be obtained by less
cumber some means.

In the present effort, as in the Chapman-~Enskog method, an

essential point is the elimination of substantial derivatives of

TS se g A e e AeaA e - Laa o SRS S
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density, flow velocity, and temperature in favor of spatial deriva-
tives using conservation equations (II-5),(II-6), and (II-7). It
is this point, as will become apparent subsequently, that leads to

(n)

dependence of the £ on spatial derivatives.

By suitably expanding the expressions involving f and f1 in
the collision integral, contributions involving the ¢(n) may be
separated according to the order of their spatial derivatives.

On<e the ordering exercise is complete for each term in the
Boltzmann equation, the ordered contributions on the left and right-
hand sides are equated, giving a series of equations based on the
order of the spatial derivatives. After some preliminary rearrange-
ments, the resulting equations are in suitable format for calculating
moments involving specific ¢(v), such as those occurring in the
definitions of P and q. The "selected" ¢(v) consist of only those

(n)

velocity functions which are indisponsable for calculating the P
and q(n).

As will be seen, the working equations employed in this
method have considerable utility in that they allow the calculation
(n) (n)

of P and q from lower order moments involving only a few
eigenfunctions such as Woz(g) and Wll(g). In most cases, the lower
order moments needed in a given order are already known from the
previous orders. However, each new order does introduce a few new
moments which must be evaluated. Even so, the explicit forms of the
¢(n)

need not be known for any of the higher order work in deter-

mining the heat flux and viscous stress contributions. In fact,

cnnottdl

AR AR a7
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once the lower order moments have been calculated, the remaining
effort requires only a very careful algebraic exercise.

To carry out the specific calculations as outlined above,

the one~dimensional form of the Boltzman:: equation is written as
1

2
of of > 2¢
wtV,E s fvldvlfdn[m] Foo [£'e] - fflj , (11-22)

where, to repeat the differential scattering cross section for

Maxwell molecules

1
2
o(g,x) = I%f} EéXL . (11-23)

The time derivative of the velocity distribution becomes

of _ .(0) 9 (1) (2) 3G ...
e = f e e e+ 4 :]

at
(0)
N E+ PRCORNINCI NN ]gi (11-24)
and the streaming term can be expressed as
v, g% = (u + Vz)f(o) g%—[} + ¢(1) + ¢(2) + ¢(3) + ----E]
0)
F v 1+o® 4@ 46 +:-] r_
z 2 (11-25)
With ¢(n) of order n in spatial derivatives, the left-hand

side of the Boltzmann equation, (II-22), may be rearranged according

to the order of the spatial derivatives as
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-(0)
of + v of le +V af(O)
t dz dt z Oz 1
D
2 1.(0) (0, 9 |€0), (1)
+ Dt f + f ¢ ] + Vz e [f ¢ ]}2
D r
“3 100 0 (1) (0),(2) 9 1.€0) (2)
+ Dt f + f o) + f ¢ ] + Vz Yy [f ¢ ] 3
D ’
ERANO) (0), (1) (0),(2) (0, (3) 3 1:€0) (3)
+ ot \f + f $ + f ¢ + f ¢ ] + Vz Bz[f ¢ ] 4
+ secee (11-26)

where %% represents the kth order part (in the sense of spatial

derivatives) of the substantial derivative of the quantity differen-
tiated. Similarly, { }k means all terms within the enclosure that
are of order k.

Substitution of f and fl in the collision term results in a

similar ordering according to the order of the spatial derivatives

of the ¢(n).

Since, in local equilibrium, the products of the
distribution functions before and after collision are equal as a
consequence of conservation of energy and momentum (i.e.,
f(o)'ffo)' = f(o)ffo)), the spatially ordered form of the collision

integral may be arranged as
1

2
f, d?ljdfz[%-] F(Y) [f'f'l - ffl] -

1
> 2k (0) . (0) ()’ ' (1) (1)
fvldvlfdg[m] FOO £77F) [< L T A >1

rof

+<¢)<z> LD 0@ @) ¢(1)¢{1)>2

WE ey
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(' ' @' W' (@) Q) 3)_,B)_,(2), (1) _,(2), (1)

+<¢(4)'+¢(4)'+¢(3)'¢(1)'+¢(1)'¢(3)'+¢(2)'¢(2)'

1 1 1 1
() _, 4)_,(3) ()_, @), (3)_, () (2) }
 ANE D Dl S R At D S A . (11-27)
Equating the spatially ordered expressions in (I1~26) and (1I-27)
leads to the basic equations for determining P(n) and q(n).
Determination of P(l) and q(l)
1) (1)

The first-order calculations required to obtain P and q
require the evaluation of the derivatives and the associated
integrals which arise from the first-order terms in (I1-26) and
(11-27).

In preparation for the evaluation of the substantial and
spatial derivative expressions which will be used throughout the
remainder of this chapter, the following preliminary relationships

will be helpful.

Starting with the equation for the equilibrium distribution

3/2
(0) _ m _m_| 2 2 a2 _
f = n[ZﬂkT} exp< T [vx + vy + (vz u) ] . (11-28)
pe (©)
the substantial derivative Dt may be conveniently obtained from
IR B P (O NS W I B () g
{at + uaz} nf f(O) [at +u v ]f s (11-29)

RS w0, Dt

SIS 2
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with
© _ 3,({m)_3
nf = fnn + > Qn[zﬂk] > n T
m 2 2 2
- T {vx + vy + (vz - u) ] . (11-30)

The resulting substantial derivative may be expressed in the form

gg(O)

Dt

2 mV
@ fiom_1{3_m? o, , (™ Du ]
= f [n T [2 2T ] *2 [ZkT] Dt ]' (11-31)

Converting to dimensionless velocity forms and recognizing from the

tables for the er(z) in Appendix A that

<>
Woo(c) =1, (11-32a)
5 2
Wlo(c) = [E -c ], (I1-32b)
Y@ 11-32c)
01(¢) = ¢, (11-32¢
the substantial derivative may be further expressed as
(0)
e () 1 bn 1 o1
Dt f [w00(°) ape ~ f10 ) Toe
) 1/2 3
+ 2 2kT (c) . (11-33)

Similar operations on the remaining spatial derivative term

of equation (I1-26) yields
(0) 1/
O b o2 [ ® - (B3 B

1 2,
+ 2{ 3 oo(c) 3 10(°) +3 Yoo (C)] S (11-34)
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The above result requires some "construction" of the terms wrl(g)
from the dimensionless velocity forms.

To assist in examining the order of the contributions in
the conservation equations as applied to the substantial deriva-
tives in (II-33), the conservation equations are written below so
as to isolate the substantial derivatives on one side of the
equation. For later reference, the spatial order of each term is
entered above the term, taking into account the final order of the

term after carrying out the differentiations and multiplications

indicated.
@
g—‘tl = o (11-35)
@ ©)
Du _ _ kT [L31) _ kT 1 {dn)
Dt m (T oz m n {3z)
@ 0
L2 [P(l) + P(z) + P(B) + P(4) + J (I1-36)
nm az

Dt z 3nk 0z
T [ D@ 3@ ,,,,,] (11-37)

The first-order part of (II-26) is constructed from the
first-order part of (I1I-33) and this involves contributions from all
three of the above equations. Summing the contributions from (II-33)

and (II-34) yields

(0) va
1 of 277 ((0) )4 2y | Qu _|2kT Lt
e tVpy T 3[“’02“)} 3z [ m j lell(c)] T 3z (. (11-38)
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The remaining work to determine the explicit forms of P

(1)

and q involves the evaluation of the first-order part of the

collision integral given in (II-27), which is written below as

1/2
> 2K (0) (0) 1)
fvldVlJ'dQ[F] F O£ W) (vl)A[¢> ] (11-39)
where
A¢(1) = ¢(l)' + ¢1(l)' _ ¢(1) _ ¢1(1),
dV1 = dvl,

and f(o)(v) is independent of the integration over vy-
Expression (II-39) is f(o)(v) times the linearized collision
operator J which, when operating on the various er(g) introduced

earlier, yields
S -
J [er(c)] = €. [Wrz(c)]
Here, J has been defined by
.-* —
J[‘l’rl(c\] = ‘{V

Appendix A provides the following results:

> 2¢ 12 (0) >
ldvlfdﬂ{—a—} FOOE, A[‘?rl(c)] . (11-40)

1 -> -Cl ~ > m 1/2

szdcle fdQF(X)AL__‘Pll(Z:)] = -nxz[wll(c)] {E'E] (11-41)
L + 3 oy ()2

;@zfdcle IdQF(X)AEyoz(CE] =-3 "AZE‘VOz(Cﬂ {E] (11-42)

In the above AZ is a pure number determined from

A, =fg dy sinx(l—coszx) F(x)

and X is the deflection angle associated with binary collisions.
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A comparison of (Il-41) and (IT-42) with (II-38) shows that

n

Jf%l%lz t?fj 1/2
¢(1) - 2K <_ __L\yll( ):] 7 5 + @CZ )J au (11-43)

(V%)

where ell = -ﬂAz and €02 = - E-WAZ are the eigenvalues corresponding

t2 ¥, (©) and ¥, (©).

Knowing ¢(l), the first-order contributions to the viscous
stress and heat flux may also be determined from the definitions
(I1-20) and (II-21). From the orthogonality of the Wrg(g) it follows

that

o 1/2
1 4 [‘2‘! 43 2
P( ) = - 3 nkT K [_ _E) ﬂ3/2fdc [?02 (Zi] ’

nsoz 3 9z

n 1/2
= - -g— KT ff -g—‘; , (11-44)
2
where the integral is of a type tabulated in Appendix A.
Introducing the abbreviationm
n:ll/Z
w=2ur ; , (11-45)
the first-order viscous stress term may be written as
P = dy e (11~46)

with u recognizable as the gas viscosity.

A similar calculation gives the first-order heat flux term

1/2
‘ 20 12 a1
(1) _ _5KkT % ar
q = 2 m "52 3z (II—47)
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with the thermal conductivity K defined by

215
K=3

3|

. (11-49)

(2) (2)

Determination of P and q

The integral equation for ¢(2) is composed of the second-

order parts of (II-26) and (I1-27). Separating the collision

integrals which involve ¢(2) @

(2) (2)

from those which involve ¢ the

expressions for P and q can be determined from

1/2
- 2K (0) (0) (2)° (2)'_ (2) () _
fvldvlfdg[nl] FOOf (v)fl vy [¢ +o,7 -0 -6y ] =

1/2
> 2K (0) (0) 1), (1)’ (1), (D)
_J'VldvlfdQ[m] FOOE (v f) (vl)[q) o770 — ey ]

p ¢(0)
b2 ey 2 [f<0>¢<1>], (11-50)

Dt

D
+ _z[f(m@(l) 2

(2)

In order to determine P without solving explicitly for

¢(2), multiply (II-50) ty mvi, integrate over all 3, and use the
H~Theorem transformations on the collision integrals. These

operations yield
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1
2
> (0),(2) > . (0)r,of2¢ 2] .
fvdvf o fvldvlfl fdn[m] F(X)md [vz]
1
2
> 1 > (0),(1 2 2
- 3f ave @ )Ivldvlfi 24! )fdQ[;K-] F(x)mA [vz]
D
+ dv v2 = (¢ (0)y ) + dvmv 2 aa‘z (£(06 1)
202 f(o)
+[ dvmv dt , (11-51)

where, for anv W(3),

AfY] = [¥' + Wi -Y - Wl] .

Using the explicit results for the relationship between V',
Vi and V, Vl (from the dynamics of binary collisiong), integration
over the solid angle in the collision integrals of (II-51) may be

effected with the result that

fdQF(x)mA[Vi] = mfgdxsinx(l - coszx) F(X)*

LS [vz- lvz] + [vz 3 i] AN 299 > : (11-52)
Several of the terms of the right-hand side of (II-52) do not
survive the subsequent integration over ¥ and Vl, either because
they occur as odd functions of velocity times the even function
f(o), or because of the requirements (II-11), (II-12), or I1I-13).
Thus, the collision integral on the left-hand side of (II-51)

reduces to
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2

> (0), (2) () 21
[ avE g fvld [dQ[ ] F (x)mA z] -
1

3. [2¢ (2)
ZHAZ [ ] P . (11-53)

The collision integral on the right-hand side of (II-51) vanishes.
The remaining integrals in (II-51) containing the substantial

and spatial derivatives can be rewritten by nqting that the inte-

gration over velocity space and the differentiation with respect to

time and physical space are independent, and hence commute. Thus,

> 2
fvd"“‘ 2 (@)

j avav2 (16 M) - 1 496Dy @2 == (av’), (11-54)

and

fvdvaz L (¢(0, M)y .

9z
2 dvmv3f(°) W g ave @@ 2 ) (11-55)
3z’ 9z z
avz du
Recalling that Vz =v, - u(z,t), which implies 7 - T 350
the preceding results may be combined to give
1
3 pis (2)
-5 Az{n\] nP =
D 2.(0), (1 3 + 3.(0),Q1
f dvmV f( )¢( ) ngvdvmv f( )¢( )
(0),, (1) y Dyf (@
-
+f, dvf ¢ (3mv ) + [ dvmy ;o (11-56)
(0) (1)
Since f and ¢ are known explicitly, the remaining

integrals in (II-56) may now be evaluated explicitly. Doing so

(and then performing the differentiations) gives
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@ _ 18 ()2 4k o
) )9 dz 3 mn dz 9z
2
+ 4 kT 19n/" 4 kT dm
3 2 {3z 3 mn 3 2
z
2 2
2 k9°T , 2kT |1 9
3 2 + = [T 5;] } , (11-57)
z
with p the pressure, p = nkT.

The q(z) calculations proceed in exactly the same manner
except (II-50) is multiplied throughout by %mvzvz and integrated
over all 3. The intermediate result from this operation is

A
™ @ _m (0), (1)
- 1 d T Dt'v dv z(f ¢ )
_m)2
2K
0y (,2, 2] 21 (0),, (1)
+fdvf T vt +v -——+-—fdv9v S0
2 "'z Dt 2 )
D, f
7e (0, (1) m 1,03 2y | u sm2, D2 -
+ [ ave’e 2[2vz+2v vz} o+ [ v 3 v = . (I1-58)

Performing the integrations and extracting the second-order

contributions, the final result for q(z) is found to be
@) | Jﬂ? 953u 10T _ Z.EEE _ 22903y (11-59)
q p) 8 3z T 9z 4 5 ndz cz | '
(2) (2)

The derivatives of the number density n in P and q may

be eliminated in favor of derivatives of the flow velocity u by
using the integrated continuity equation (nu = constant).

(2) (2)

The results for P and q ', when substituted into the

general conservation equations (II-6) and (II-7) yield a pair of
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coupled, nonlinear second-~order differential equations for the
velocity and temperature within a normal shock wave in a Maxwell

gas.

(3) (3)

Determination of P and q

(3) (3)

The third order calculation to determine P and q

follows the same pattern as employed in the previous order. For

third-oxrder, (II-26) and (IT-27) give
1

2
fvldvlfdﬂ[—zr-ﬂ oot Qe wpa p@)-

N

Pt @5 O [¢<1>'¢<2>' RCLNCH

> 2K
- fvld"lf‘m [“nT] 1 1

I_)_S_(f(o)

(1)
bt )

+

D
oD@ ¢(2)¢£1>]+ 23 (0, (@) A

Dt
p.f 0

3 3 2
A T (£De @)y,

ot (11-60)

Multiplying (11-60) throus.aocut by mVi and integrating over
(3)

>
all v, the intermediate result .or P is obtained as

D
i JNE ) R %(2) N P(l)]

—;—/2 Dt
b

ST

L1, , 8 g
3 9z 1% 9z
3/2

(11-61)
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The moment of W03(Z) with respect to ¢(2) may be determined
from the integral equation (II-50) for ¢(2), without solving
(2)

explicitly for ¢ ~°, in much the same way as the moment of Woz(g)
with respect to ¢(2) (« P(z)) was determined.

Starting from the identity (see Appendix A)

2 .
1 -+ ~c]_ > _ >
3/zfdcle fdQF(x)A [W03(c4 = 603 {P03(c% , (I11-62)

A

with € . = ~ 99

03
this implies

3/2
2kT
[——l faze 6 @v @ -
ce 03'®) =

r 3/2

o

1/2
= 1/2 3/2
1_251 f dv 7S ON (2); d f<0)Idg{_,] F(X)[ZkT] A [‘”03“)]

€ a0t
03
(11-63)
> ->
Now multiply (II-50) by Wo3(c), integrate over all v, and use the
H-Theorem transformations on the collision integrals. Proceeding as
in the preceding section leads tec an alternative form for the right-

hand side of (II-63) or, expressed otherwise, a trap for the moment

of W03(3) with respect to ¢(2):
21132
e jd+.c2 @y @ -
. 372 ce” ¢ ¥yqlc) =
2",
o p(L) D 1)
5 L a2 9% )
" 2mn TA, [5 n Dt ' 5 mn 9z ( ) + n 3z ] . (11-64)

Using (I1-64) in (II-61) and performing the necessary differ-
p(3)

entiations, P is found to be
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3 _
2

2y o, 33"] L 16 I@ef} . (11-65)

(3)

In obtaining the above result for P , substantial deriva-

tives of the lower order P(n) and q(n) in (II-61) were determined
using the identities

D (oF) _ B [DF)_ gu 3F B}
Dt[az] Y [Dt] 32 3z (11-662)
and

— a2 = . (I1-66Db)

(3)

The third-order contribution to the heat flux, q , is
obtained by multiplying (II-60) throughout by %mVZVZ and integrating
(3)

->
that result over all v. The intermediate form for ¢ turns out to

be

A D D,u
R RN G R [qu) . q(l)] N P(z)[_l_]

1/2 ™ Dt Dt
n
E
D,u D.u
LR N ¢ D e M
+ 5 nkT Dt + P [ Dt ]

afr1x @) 16 @ au
+32[2 m P ] + 5 4 dz
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4 +c? (2
+ %{3‘ nkT -2 n3/2 fdcec ¢( ) [‘POB(Z)]>
2.2.2 2
o9 /J4nkT 1 »>=c” (2) < > _
+ Bz< s e [a2a ¢ [‘on(c) “’12“”]} . (11-67)

Although the P(3)

calculations have already provided the result for
the second~order moment of W03(Z), the additional second-ovder moments
of the eigenfunctions WZO(Z) and le(z) must still be evaluated.
However, methods used to evaluate the W03(g) result may be used to

evaluate the additional moments occurring in (II-67). The calcula-

+
tions of the second moments of Wzo(c) and le(z) give

2 2
9 /1 f[2kT 1 +=c" (2) > Y
52 §nm[ - ] 372 fdce® ¢ {VZO(C) - le(cﬂ
2 (m]l/z
m 3 ) 33 o] g e P @
3 dz 28 2 TA 5mn Dt
mn 2
(1) "
L36kr 3% 102 kpr (U
5 2 9z 5 2 2z
m'n mn
D, T
12 KT Qu () o kL oS (11-68)
7 m2n z Z Dt

Performing the derivatives and eliminating derivatives of n

in favor of derivatives of u yields

3 3 3
NNy I 1) [1 a_g] N 5[1 3 u]

_ 1451 (1 3T) fL 37T} _ 9171 du] (1 o1
16 |T 9z T z 8 (u dz T 9z
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3=
|

L
N

265 (1 21) [1 au]z _ 701 [La_T] [18_23]
16

16 T 9z) |u 52

—

397 1 2u] (L8%1) , m [ 166 (1 3u) (ou)?
16 (u 9z (T z2 kT 21 |u 93z} |93z

p rn2 2
949 j3uj j37u 8035 (1 3T{ |du
* Tes SE) 822] " 336 Lf 52} [52} ] . (11-69)

The substitution of the viscous stress anc heat flux
contributions through third-ordcr into the general conservation equa-
tions (II-6) and (1I-7) yields a pair of coupled, nonlinear third-
order differential equations which govern the spatial dependence of
the velocity and temperature in a normal shock wave. The third-
order results are known as the Super-Burnett differential equations

for the structure of a normal shock wave in a Maxwell gas.

(4) (4)

Determination of P and q

The fourth-order contributions of the viscous stress and heat

flux are found by applying the same moment methods to the integral
(4)

equation for ¢
> (M2 o ), [ @
jv dvlfdQ[ir F(O £776, A [¢ J =
1

/2 "y
> 0).(0 HN' M) 3 1 3 1)
'fvl“vlfdﬂ{%]l FGp 1@ [¢< 1y D0«

obtained from (II-26) and 11-27)

- /2 2)' ()" (2), (2
_¢,<1>¢{3>] “fvldvlfm[%(]l . f<0)f{0)[¢< )22, )]

D

bt [f<o>¢<3>+f<o>¢(z)+f(0)®<1)+f(o>] by {f<o>¢<3)] 11-70)
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The moments with respect to mVi and -]zszZVz yield the
following intermediate results for P<4) and q(A) respectively:
1/2 (3)
3, 2K (4) _ 8 9q
- WK [ } n P o=y
+£)i pB3) L p@ MW L 1,3 2u
Dt 3 oz
40| om _2_k13/2 fd*'c Gy Ol (1I-71)
5z| 3/2 (m 5 03¢/}
7
- ™ @ _ %l », @, O
1/2 pr| 1
%
D,u D,u D,u D,u
e AP €D N Y ¢ W et DI Al I
+DtP +DtP +DtP +Dt[2nkT]
163u (3,12 3)
MY 2% [m]
2kT 1/2
du )4 [ ] =<0y @
*52\5 ™ TN face [ 03(‘:%
EN R e jd*c Oty @ -y, @ 1-72
*32) 3" T 3/2 20(0) = ¥p,(e . (11-72)

The evaluation of the third-order moments of W03(g), WZO(Z),
and le(g) proceeds as in the previous sections. The calculations

(4) %)

of the nonlinear expressions for P and q were carried out to
the point where the results were known in terms of substantial
derivatives, spatial derivatives and the lower order viscous stress
and heat flux contributions. For reasons which will become apparent

in the next chapter, it was not necessary to perform all the
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differentiations and substitutions to reduce these very involved

expressions to the spatial derivative formats as was done in the

(4) (4)

previous developments. In fact, only the terms in P and q

which are proportional to the fourth-order spatial derivatives

34n 34u or 34
? b

32 3z 3z

all other terms leads to the linearized results

3

will be needed later in this report. Neglecting

£~

4 2,2 4 2 .4
4 _w ) Lk°1° 3%, 197 k7T 31 _
A T T B L B R (I1-73)
P 0z m~ 9z
and
4 L4
(4) _ 8335 u 9w _
=" 33% 2% - (11-74)
pp 9
) (4)
If the complete nonlinear results for P and q were

included with the lower order viscous stress and heat flux contri-
butions, the general conservation equations (I1-6) and (II-7) would
yield two coupled, nonlinear fourth-order differential equations
for the temperature and velocity in a normal shock wave. These

fourth-order results are known as the Super-Super-Burnett equations.
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CHAPTER III
METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS
Numerical Integration

It is convenient to rearrange the general conservation
equations (II~5a), (II-6a), and (II-7a) in two ways. First, use the
continuity equation (II-5a) to eliminate p in favor of u in the
momentum and energy equations; then, use the momentum equation to

eliminate P from the energy equation. These rearrangements give

— lq] + £l (t-1) - 2 Mz(u—l)2 + (v-1) = 0, (III-1)
3p, u.a 2 6 1

i1
and

SMizu 5 9

5 [P] + 3 Mu-1) + (1-V) = 0, (111-2)

3piui
where the dimensionless velocity (U) and the dimensionless temper-

ature (1) are defined by

d (111-3)

and
T (111-4)
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with 1 = 1 corresponding to conditions far upstream and i = 2
corresponding to conditions far downstream. The quanticy Mi is

the Mach number,

, (11I-5)

gix

2% = % T - (111-6)

i
In the Navier-Stokes order of fluid mechanics, the

expressions for P and q are

() _ 4 du
P="P = 3 u iz (I11-7)
and
= o) 2 dr -
q=q =-Kg . (II1-8)
For Maxwell molecules, u and K are given by
= —T— = b
u(T) “i[Ti] HyT (111-9)
and
ki,
y = 22 1 -
K (T) = A (I11-10)

In due course, following the convention of other authors,
distance in the direction of the mean flow will be measured in

multiples of the upstream Maxwellian mean free path Al’ defined by

i

16 1
A, = . (111-11)
L 3002 92
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Anticipating the eventual introduction of Al’ the Navier-Stokes

equations for a Maxwell gas may be written in the form

UM,
20 [Hi%] dv _ 5.2
5 [p 3 ]ur iz -3 Miu(u-l) + (1-v), (I11-12)
1%
TP 1 oar 3 5 2 2
el IRk (UL Y & D - = - {1)— -
z‘[piai]Mzdz 2\1 1) 6Mi (v-1)" + {v-1). (IT1-13)

i

Gilbarg and Paolucci provided an extensive analysis of the
solution of (III-12) and (III-13). Everything depends on the mathe-
matical nature of the singular points of (III-12) znd (III-13) in the
auxilliary v-T phase plane. The physically significant solution of
(111-12) and (ITI-13) may be represented by a trajectory which con-
nects these two points. Such a solution exists and may be obtained
by numerical integration, but the numerical integration must be
initiated near the downstream singularity and proceed upstream.
Numerical integration from upstream toward downstream will necet -
sarily fail.

This requirement for successful numerical integration may

be understood by examining all the mathematical solutions including

the nonphysical ones very near the singular points. To accomplish
this, linearize rhe Navier-ftokes equations, and put
Kz

A TET, +Te , (IT1-14)
1
: Kiz
%E u’® uy +u e , (I111-15)
or
: ”*
% T=1+Te , (111-16)
ﬁ.
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Kg2
v=1+Ue . (111-17)
The characteristic or secular equation for Ki may be written in
the form
2 2 2 2 "
20 1] + (9-23M) L, + 6 M, (M;-1) = O, (111-18)
where
u M
L, = [ iai]Ki , (I11-19)
P34

The roots of this characteristic polynomial are given
graphically in Appendix B along with a table of the physically signi-
ficant roots used in the subsequent calculations of the gas property
profiles. An examination of the characteristic roots shows for all
Mach numbers that upstream, both roots are real and both are positive,
whereas downstream the roots are rea’ but of opposite sign. There-
fore, near the upstream singularity, the most general solution of
the linearized Navier-Stokes equations involves a linear combination

of exponentials with the two positive values of K These exponen-

i

tials tend to zero as z+ - «, giving u~>u1 and T*Tl. However, near

the downstream singularity, the twovaluesof k, have opposite sign

2
and the most general solution diverges as z»> + ®. There is only
one trajectory for which u+u2 and T->’I‘2 as z> + ®,

Thug, it is the signs of the roots of the characteristic
equation (II1-18) that determine whether the Navier-Stokes equations

are amenable to numerical integration, and, if so, in which direc-

tion through the shock wave. The means used to attain this iunsight
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are extremely important, for they illuminate difficulties encoun-
tered later in attempting numerically to integrate the higher order
gasdynamic equations.

The results of numerical integration of the Navier-Stokes

equations will be discussed later in this report in Chapter V.

Perturbation Expansion

It will be seen shortly, that some difficulties arise when
numerical integration is attempted in the higher order gasdynamic
equations. Thus, at this point in the thesis, it is convenient to
introduce the development of a perturbation expansion method which
can be used to integrate the higher order equations where the
numerical integration fails. 1t is appropriate tc discuss the
development of the perturbation expansion now, in conjunction with
the Navier-Stokes equations for it will be assumed that such a
method will be trustworthy if it gives good agrzement with the
results of numerical integration of the Navier-Stokes equations.

A successful perturbation expansion presumably must be based
on a dimensionless parameter that is always less than of order unity
(even for Ml>>1). In addition, the perturbation expansion should
not lead to approximate results that violate the Rankine-Hugoniot
relations (which connect upstream and downstream values). Finally,
the perturbation expansion must somehow do justice to the enormous
variation in shock wave thickness between the extremes of M =l

1

and Ml>>1.
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In consideration of the above, the choice of the expansion parameter

is € = Mg - 1, and, from this definition, it is noted that € varies
monotonically from 0 to ~0.8 as M, increases from 1 to «.

1

In order to avoid violations of the Rankine~Hugoniot relations
induced by the perturbation expansion, a normalized density Rp and

normalized temperature RT are regarded as basic dependent variables,

where
O(Z)—p1
Ry(2) = ) , (II11-21)
'I‘(z)—T1
RT(Z) = —T;:TI— (111-22)

These normalized quantities may be expected to vary from 0 to 1,

independent of M Since the boundary conditions which these vari-

1’

ables must satisfy are independent of M., it is unlikely that approx-

l,
imations to Rp and RT will fail to have the correct asymptotic

values. From (III-21) and (III-22) and the Rankine-Hugoniot rela-

tions it follows that

s Y 3(M?i+1)
L2l —= R (2), (I11-23)
Pp v (Mf+3) P
: T (Mi—l)(5M§+3)
-'i'—— =1+ 5 RT(Z). (111_24)
1 16 M

1
Note for future reference that one could have introduced a

normalized density Rp and normalized temperature RT def ined by

RIAD ROBL IR P PR P Tafakagnts ¢ T LA K

F'TW%‘?% AR TN PR

U A A R o

- e
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pz-p(z) R
Ry(z) = ———=1-R(2) , (111-25)
271
TZ—T(Z)
RT(Z) = —'1'_2——-'1'—.— =1 - RT(Z) s (111-26)
1
in terms of which
N 3(M§-1)
===l —— Rp(Z) , (I11-27)
) (M,+3)
. (Mg-l) (smg+3)
ol — R.(2) . (111-28)
2 16 M, t

The pronounced dependence of shock wave thickness on Mach
number suggests the introduction of a Mach number dependent length
scale to "tame'" the differential equations. The idea is to regard
Rp and RT as functions of

T I KMz (111-29)
with k(M) chosen so that the thickness of the shock wave (in units
of 7) does not show a pronounced dependence on Mach number.

How does this lead to a choice for x(M)? It is known that

K,z

far upstream Rp and RT are proportional to e ~ , with the physically

significant choice for x (positive, tending to zero as M -1},

)|

Pya
171 1 2 2 \2 2,2 1/2
1 ”lMl 40 (23 Ml—9) -[ (23 Ml—9) ~ 480 Ml(Ml—l)] . (IT1-30)
K2
Far downstream, however, Rp and RT are proportional to e , with

the physically significant choice for Ky (negative, tending to zero

as M1+l),
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Paa
=221 2_ 2 02 2.2 ] 1/2 .
K, = i, 30 (23 M;-9) - [(23 M,-9) “-480 M5 (M, 1)] . (III-31)

For M~1, the two reciprocal length scales (III-30) and (III-31) are

1
1>>1, K1~Ml and K2~M1 .

Now, it will be shown that in the interior of the shock wave,

both proportional to (Mf—l), but for M

for Ml>>l’ K~§%: To do this, start from the full nonlinear Navier-~
1

Stokes equations,

~ U M 1
20 | "1y dv _5 2 i X
5 | 5a uT oo 3N u(u-1) + (t-v), (I11-32)
L1
Pu M-]
L 14} ©dt 3 gy 22 -2 + (u-1), (111-33)
4 piai M2 z 2 6 1
=3 o - 1

set 1 = 1 and think of U and T expressed in terms of Rp and RT'
Next, assume the existence of an "interior" of the shock wave where
Rp and RT are both of order 0.5. It thenfollows from (III-32) and

(I1I-33) that within such a region, for Ml>>l,

® 1
dz Ml
®Re 1
dz ~ Ml

In other words, K~B%’in the interior of the shock wave for Ml>>l.
1

Hence, relying on the foregoing analysis, the Mach number
dependent length scale for the perturbation expansion will be based
on (I1I-31). This choice may be expected to be appropriate through-

out the shock wave for M. ~l, and everywhere except far upstream

1
for Ml>>l. Its actual utility can only be judged a posteriori.
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Based on the above developments, the perturbation expansion
can now proceed by rewriting (III-32) and (III-33) for i = 2 in
terms of Rp’ RT’ and g, defined by ¢ = KZ(Ml).Z and then seek

Rp and RT in successive approximation by writing
@ =RV @ + @V @ kP @ 4 e amr-

(0)

R, (2) @ + eRT(l)(c) + e (2)(c) + seoee . (III-35)

Since Kk, is brought into the differential equations (III-32) and

(IT1-33) when they are written in terms of [, the ¢ expansion for

UM
2 Ky will be needed and is given by
P29
) 3.9 2,369 313509 4
=, =(Fe -y e+ =2 @7 - S5 g b eeees )| (IT1-36)
Pa?y 2(7) 4(7)° 8(7)

In zeroth-order (III-32) and (I1I-33) are satisfied identi-
cally. Infirst-order, both (III-32) and III-33) yield the same

relationship

(0) (1))
Ro (¢) = Ry ().

In second-order (I1I1-32) and (III-33) yield, respectively,+
L) 1 () _ 9,0 _3 .00
2°T 2 p 8 p T 16 T
> ®
9 (0, (0) | 3 0) 5 Q = -
+3 Rp RT + 1% [Rb ] + 5 dr 0 (I11-38)
and
1) 1.1, R(0) _ 3 (0)
2T 2 p o) 16 (O)
3 (0) w)_L_ 1 BT -
+ 7 Rp 16 { } - 38 T4 0.(II1-39)

TFor clarity, the argument ¢ will be dropped throughout
the remainder of this report.
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(0) (0)

Using (III-37) to express RT in terms of Rp , the last
two equations may be looked upon as involving R(l) él), and
R;O). The difference between (III-38) and(III-39) is a first-
order differential equatio- for Réo) in the form
(0)
dR 2
p (0) (0) :
—= = -l R . -
iz Rp [ 0 (111-40)

Forming the sum of (I11I-38) and (ITI-39), the derivative of

Réo) may be eliminated using (I11-40) to give an algebraic equation
for Rél) as
2
ay _ Q) , 67 (0) _ 67 (0)
RT = Rp + — 8(7) 507) . (I11-41)

For convenience in calculating the asymmetry of the normal-
ized density profiles, the origin of the coordinate system is taken
where Réo)(é) = 0.5. With this specification, the integration of

the second-order result gives

() = % 1 + Tanh [—(2;—] (I11-42)
\

and from (III-37)

Réo)((,) =% 1 + Tanh [E]T . (111-43)

2
Equation (I11-41) will yield immediate results for Rél)

9

1)

ce R
on 0
has been determined from the succeeding perturbation calculations.
The third-order expressions obtained from (II1-32) and
(111-33) introduce the next higher order of the perturbation

quantities. The results are
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1.(2) 1 o(2) 9. (M) 9 (0 _ 3 Q)
2R -3 Ry 8 Ro 32 I T
2

9 (0) 1 (0) (0) 9 (l) (0) + 21 (0) (0

+89’1‘ 640T+80T B[Rp]RT
2 3
NON (1) 33[ . (0 27 [ (0) 3 (0
+8 0 32[Rp] +37{[Rp J + 76 Ry
(0) (0) 1

T

I S SN X 1 7 dt (I11-44)

and

1.,(2) _ (2) (1) (0) ERNey
7 Ry 2 R, 8 Ry " *t37 32 Ry * 16 *p

NONINE

t 7 4 Ry "Ry 32 Ry " Rp 4 R "Ry

() (0 L 3 (W) (0) 32[ R<01 2 (0
o] T

2 d
1Rm%u)_g{qu 15 . (0) Ry

T8 %o %p 32 T 8(M)
(0) (0) (1)
45 R(0) 15(159) Ry 215 Ry = 0. (III-45)
YD) ‘ d; 32(7) g ~ 28 dC )

(1)

Eliminating R(O) and RT by means of (III-37) and (III-41),

and taking the difference between (I1I-44) and (IILI-45), one finds

(1)
aR_y RO R . 6L [0 P e L]
& PR s le o

2) (111-46)
An expression for RT is found using (II1-46) in the sum

of (III-4%) and (III-45). The result is

(2) _ o(2) | 67 (0)] (1) _ 1931 (0)
Ry = RV + gy [1 2 R ] Ry P N
_ 27037 [ (0)] , 28968 [R(O)] . (111-47)
64 (7)° 66y L °




50

Proceeding as before, the fourth-order perturbation

calculations give

ar;? (0) ) 6 7.(0) (1)
D . - _5__
FTa +[2 Rp l]Rp 2 {4(7)2] Rp Rp
2 2 2
_, e 4 [R<0)] R® [Rél)] _ 20203 {R(n)]
L4(7) P 6L P
379 [_] 3 1501 [ (] *
4 20706 (@) 7 1439 4 (I11-48)
16(7) 16(7)

and

3 _ 3, 67 [ (@] .
RT = Rp + §Z77 [l 2 Rp ] Rp

2
1931 (1) _ 67 [R(l)} _, [27037] (0 (1)

T P B e 64y PP
2 2
‘3 [289683}[R(0)] @) 7274575 20 g3434§§5 [R(O)]
64 (7))L P b s1a()° P s’ | P
10962264 [ (0] 2 12578202 [ (0)]*
s - SR Ry . (111-49)
512(7) 512(7)

In fifth-order, the results are

(3)
dR
| 4Ry © ) .3) _
] a7 + |2 Rp l] Rp
i 61 ] (0). (2 61 ] 2 @) . el @) ?
: 2———41{()11 )-3[——4[11 } R()+————2[R ]
a3 ° ° s ° 4L P
- - r 2
o) k@ R(lﬂ L, W@ [202034 (0, (1)

e - 2 3
+3[l‘:_7_9A4 [@] 2 @ _ 4[_1_@21_4 [ R<o>] L)
ITYeA N L 167 L ° 0
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2 3
1971230[ R(O)] , 3526570 [ R(0)]

128(méL ° 128()8L °
13336026 [ (0)] # . 7838226 [ ()] °
- === Rp + — RQ J (I1I-50)
128(7) 128(7)

and

(4) _ (&) , 67 [ (o>] (3) 1931 _(2)
R =R/ 4=+ |1 -2R R - === R
T p 8(7) o 64(7)3 )

i 2

270377 _(0). (2) 28968 [ (0)} () 727457 (1)
- 2 | R R + 3| —— R R - ———— R

L64(7)4 P [64(7)4 P P s1a(7y° P

‘s 2343482' RéO) NI 3[ 1096226;}
L512(7) P 512(7)

~ 3 R 2
125782921 . (0) a 67 1.(1) (2) 27037 [ (1)]
- 4 | R R -2 {—IR R - — R
! 512(7)5][ p ] P [8(7)] PP 3L P

2
[ R“’)] e
p p

- 2 2
‘3 289683J 2 (0) [R(l)] \ ZI209%L (), 64012103 [R(O)]
Lo ()”) P L P 4096 (7) 4096(1)" L P

) 604826712[ R(0)] 3 5690706300 %(0) ]4 + 5974300368[ R(0)} >
4096 (1)L P 40961 LP J 4096(7) "L P
(111-51)

There is a pattern in the preceding calculations, although it
will probably have escaped the reader's attention. As is pointed

out in Appendix C, not all of the numerical coefficients in the

&)
P

differential equations for R are independent, ncor are all the

coefficients in the algebraic results for R independent. The

@)
T
pattern involves a limited number of numerical coefficients denoted

by An.
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Moreover, as also pointed out in Appendix C, there is a

conveniently economical way to determine the RéJ) as functionals

of (1 - Réo)). One finds

(1)
RD

L2
p

NE)

- RéO) &faéoﬂ -A fn [1—Ré01 +Q ), (111-52
= Réo) {l-RéO)J B, [1-Ré°)] +B, Qn[l—Réo)]

+ B, [l—Réo)] fn [l-R‘;‘O)] +B, on? [1—1150)]

+ B P—Réoq on? [1-Ré°1 + Q2> , (I1I1-53)
= RéO)[ 1-Ré°)] c, [l—RéO)] + Cyn [1-R‘§0)]

I

0) (0) 2 (0)

+ C3 E—Rp ] n [l-Rp ] + C4 n [l—Rp ]
[1

2
—R(Oﬂ fn? l—RéO) + 062n3 [l-Réoﬂ + C [l—R(Oﬂ

e IRy 7 1M
o] 2, [ 120 40 [1r® 22 [ .
+ ¢ P-Rp ] nL 1-R;7) + 0% 1R o® 1-85
. 2
), 3 (0) (0) 3. (0)
+ Clo[l—Ro ]Qn [I—Rp ] ¢y [1-Rp ] n {1-}10 ]+ Q,
(111-54)

In (III-53) and (III-54), the coefficients Bn and Cn are

functions of the generalized coefficients An and the integration

constants Qj‘ The expressions for the Bn and Cn in terms of the

An are also given in Appendix C. Once Réo) has been determined

for each value of ¢ via (11I-42), the corresponding perturbed

quantities R(J) and R;J) for j = 1, 2, 3 may be evaluated to

determine the individual contributions to the normalized density

and temperature for each of the above orders of the perturbation

L
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development. The density and temperature profiles depend on
the Mach number through the Rp’ RT’ and K expansions in terms of
the Mach number parameter €.
The discussion of the Navier-Stokes perturbation results
and comparison with Runge-Kutta numerical integration results is

deferred until Chapter V.




CHAPTER IV

METHODS TO SOLVE THE HIGHER ORDER
GASDYNAMIC EQUATIONS
Numerical Integration of the Higher
) Order Equations
As indicated earlier in this report serious difriculties

arise when attempts are made numerically to integrate the Burnett,
Super-Burnett, or Super-Super-Burnett equations. The nature of
the difficulties may be understood from an analysis of the singular
points of the differential equations using the linearized equations,
just as in the preceding chapter. Following the Navier-Stokes
development, the variations of the normalized flow velocity and
normalized temperature from their Rankine-Hugoniot values are
assumed to be proportional to eK i far upstrean and far downstream.
The coupled pairs of linear differential equations then yield char-
acteristic polynomials for the Ky
The (linearized) Burnett equations yield a fourth degree

characteristic polynomial,

4 3 2 .2
70 Li - 180 Li.+ 291 Mi Li
. 2 2 al w2 . - _
+ [81—207 Mi] ML, 54 Mi[Mi-] 0, (1v-1)
in which
u.M
i1
L, = K, . (1v-2)
i piai i

X1
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The roots of (IV-1) are presented graphically as a function of
M1 in Appendix B.

The upstream roots indicate that numerical integration is
feasible starting downstream, as in the Navier-Stokes case, provided
Mljl.89. For Ml between 1.0 and approximately 1.4, the roots of
the upstream characteristic polynomial are real and positive or are
complex conjugates with positive real parts. The solutions of the
linearized equations are thus damped or oscillatory and damped, and
the upstream Rankine~Hugoniot asymptotic values are attained for all
solutions as z-+- «, For values of Ml between approximately 1.4
and approximately 1.9, all roots are complex with positive real
parts. All solutions thus exhibit a somewhat stronger oscillatory

behavior far upstream for M, between approximately 1.4 and approxi-

1
mately 1.9, but remain damped as z->~- o, Above Ml = 1.9, the real
part of one pair of conjugate roots changes sign, and there is a
manifold of undamped solutions which precludes numerical integration
starting downstream,

The roots of the downstream Burnett characteristic polynomial
preclude numerical integration starting upstream for all Ml'
Therefore, numerical integration proceeding in the upstream direc-
tion is the only feasible choice. However, the integration may be
expected to be successful for only the range of Mach numbers indi-
cated above, and experience confirms this expectation.

The (linearized) Super-Burnett equations yield a sixth

degree characteristic polynomial,
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7850 1.8 + 29160 10 = 28980 M2 L
i i i7i
+ [20475 Mi - 5427 Mi ] 3 36(201) M Li

6 4
+ [36(207) Mi - 36(81) Mi] Li

6 [2 _
- 54(36) M] [Mi - ] =0 (1V-3)

with Li defined as before,

The results for the upstream and downstream roots as func—
tions of Ml are given in Appendix B, This graphical presentation
shows that some of the real roots and some of the real parts of
the complex roots have opposite sign, beth upstream and downstream,
for all Mach numbers. Under these circumstances there is no reason
to expect numerical integration to succeed proceeding in either
direction for any Mach number, and experience confirms this expec-
tation

The results of the linearization of the Super-Super-
Burnett equations are qualitatively the same as those found for
the Super-Burnett equations. The K, are determined from the

i

following characteristic polynomial:

328399 (625) Li - 200(63) (521) LZ

6300(3791) M g = 40(81) (49) (59) M Li
+ 350(27) (2287) Mi Li - 54(49) M [2275 Mz 603] Lz
+ 8(49) (81)(97) M® i - 8(49) (243) M [23 M - 9} L,

+ 16(49)(729) M,

e 00

[M } . (1v-4)
L
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The graphical representation of the roots of this characteristic

polynomial, given in Appendix B, reveals that some of the real

roots and some of the real parts of the complex roots again have

opposite sign, both upstream and downstream, for every Mach number,
Since the conventional numerical methods fail when applied

to the higher order equations, the remainder of this chapter is

devoted to the perturbation method developed in the previous chapter.

Perturbation Expansion Applied to the
Burnett Equations

M, @ w ,

The burnett equations containing P + P and q

q(z), may be analyzed in the same way as the Navier-Stokes equations
to determine a suitable Mach number dependent length scale. The
results of such an analysis are qualitatively the same as for the
Navier-Stokes case, and thus suggest a perturbation expansion which
incorporates the Burnett result for the physically significant

KZ (negative, tending to zero as M1—>w). The expansion of

HyM 2

-~~~ g, in powers of € = M, - 1 follows from the characteristic

Pydy 2 2

polynomial (IV-1).

P,a .
) [3 102 2 4194 3 291234 4
oM |7

Key = = ¢ + + eesee |  (IV-5)
2 M 2(7)° 4 (7)° 8(7)’ ]

Since the first term in (IV-5) is the same as the first

term in the Navier-Stokes K2 expansion (111-36), the Burnett calcu-

lations do not effect any changes to the Navier-Stokes perturbation
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results through second order in €, although of course the numerical
values of k are different.

Following the same procedures used for the Navier-Stokes

equations, the Burnett calculations in third order yield

(L
dr, +[2 R(O)_l] L) 8 [Rm)] 2, 81 [R(o>] > v-e)
dc p P syl P sn? P
and

2) _ ,(2) 67 o (0] (1) _ _4811  (0)
Ry°\ = Ry™ + 50y [1 2 R } R ———-———64(7)3 Ry
18397 (0) 2 23208 (0) 3
- =2 Rp + = [Ro . (Iv-7)
64(7) 64(7)

Referring to equations (III-46) and (I1I-47), it can be seen that
the third-order perturbation results for the Navier-Stokes equations
and the Burnett equations are of the same form; only the values of
the corresponding coefficients have changed.

The fourth-order Burnett calculations yield

ar® .
b 4 [2 R (0) _ 1] DR I 7 I (DR ¢ 8]
dg P ) 4(7)2 P p
2 2 2
. 3[__§_7__2] [R(O)] L) _[Rél)] _ 36193 [Réo)]
4(7) P L 16(7)
3 4
. sz.&&fia[ R(O)] 10635 [Rm)] (19-8)
w6 L P w6t L P

and
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3) _ @, 61 ll_z R<o)} R(2) _ 4811 (D)
*r p 8(7) p p 6613 P

2
i 2[18397] NONOIN 3[ 23208]{ R(0)] ey

64(1)3 P P 64(1)34 | P o
2 2
- L [Rél)]  1rsa0r, RéO) . 2166156glRéO)]
512(7) 512(7)°!
28194216 [ . (0y] 3 . 8411148 [_(0)1*
- BLNAUS] 4 + BALLL8 [R . (17-9)
s12(7)° L ° 512(7)° L P

Again, the form of the Burnett results is the same as those found in
fourth order for Navier-Stokes, except that the numerical coeffi-
cients are different.

The fact that the perturbation equations have the same form
for the Burnett equations as the Navier-Stokes equations applies
also to the Super-Burnett equations and the Super-Super-Burnett
equations. This "pattern" is what gives general utility to the
material in Appendix C concerning integration of th¢ perturbation
equations.

The fifth-order Burnett results are

(3)

dR
2 o - 2] a0
4(7)

.3 st J [R(m] 2@ 87 [Ru)] 2., 3[ 87 J [Ru)] 2 L
@Il P Pl P snd L P P

_ o g2 __2[56193} NOMeN

poe My PP
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2 ) 70635
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P 16(7)
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Discussion of the solutions to the perturbation equations

is deferred until Chapter V.

60
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Perturbation Expansion Applied to the
Super-Burnett Fquations and the
Super-Super~Burnett Equations

1) (2) (3)

The Super-Burnett equations, containing P + P + P

and ¢ 4 ¢@ 4 (B

, constitute two coupled third-order non-
linear differential equations for the velocity (or density) and
temperature. The equations provide a rationale for a perturbation
expansion which incorporates the Super-Burnett result for the
physically significant K2 (negative, tending to zero as Ml'+w),
just as the Navier-Stokes and Burnett equations provide such a

Moty 2
Ky in powers of ¢ = M2 -1

rationale. The expansion for
Py22
follows from the characteristic polynomial (IV-4),

) p232[ 3 102 2 14190 3 _ 1123053 4
7

K = e + ~ g 4+ eeseel (IV-12)
2 uMy 213 4(7)° 8(7)’ ]

Since the first two terms of (IV-12) are the same as the corres-

ponding two terms in the Burnett k, expansion, the Super-Burnett

2
calcvlations do not change the Burnett perturbation results throigh
third order in e, except of course through the numerical value of
Ko -

In fourth and fifth orders in €, the calculations yield
equations for the normalized density and temperature which are of
the same form as the perturbation equations derived in the Navier-
Stokes and Burnett perturbation work. The generalized equations

and the coefficients appropriate to Super-Burnett are given in

Appendix C.
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The length scale expansion for the Super-Super-Burnett

equations 1is

) p2""2[ 3,102 214190 3, 1058952 4

K, = T e+ + € + eesee}, (IV-13)
2 Ml T ;)3 4(7)° 8(7)’ }

It is clear from this form for Ky that the Super-Super-Burnett
calculations do not change the Super-Burnett results through fourth
order in ¢. In fifth order, the results are of the same form as the
fifth-order results for Navier-Stokes, Burnett, and Super-Burnett.
The Super-Super-Burnett coefficients are also given in Appendix C.

The solutions of the perturbation equations derived in
this section for tue normalized density and temperature profiles
will be discussed ‘in the next chapter.

As a concluding remark on the work required in the pertur-
bation development, the determination of the eighty-four coeffi-
clents needed through fifth order in ¢ was a major effort. The
pattern, which ultimately evolved, was not obvious or confirmed
until the Super-Burnett developnent was completed.

The intuitive expectation that the Réj) and Réj)

(0)

(j = 1,2,3,+¢++) should vanish when Rp = 1, in order to satisfy

the Rankine-Hugoniot relations, provided a convenient mechanism

0)

for checking the coefficients of the powers of Rp in each per-

turbation equation. That is, the sum of the coefficients of the
(0)

powers of Rp had to vanish for each perturbation equation in

order to satisfy the Rankine-Hugoniot conditions far upstream.

Although this was a convenient check on the calculations, the
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mechanism was not foolproof. It turns out that within the arith-
metic processes of substitution, expansion and collecting terms,
it is possible to carry through a mathematical error, undetected;
yet, with a result that satisfies the vanishing of this coefficient
sum. The calculations are lengthy and require meticulous attention
to preclude introducing such casual errors. Errors of this sort
may go undetected except by separate and independent checks of the
calculations.

In the present work, alternate approaches were employed to

determine firm values of the coefficient sets A, through A4, A

2 5
through A8’ AlO through A12’ A13 through Al6’ and Al7 through A21
as these are the coefficient sets of the powers of Réo) in each

of the gasdynamic developments.

The final values for the coefficients in each of the sets
are based on the fact that the same results were obtained from at
least two independent calculations for each order of ¢ of the

perturbation expansion in each of the gasdynamic developments.
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CHAPTER V |

SHOCK WAVE PROFILES BASED ON THE METHODS OF
NUMERICAL INTEGRATION AND
PERTURBATION EXPANSION

Results for the Navier-Stokes Egquations and

the Burnett Equations Based on the
Method of Numerical Integration

An increment size of 0.05 upstream Maxwell mean free paths ?
was chosen for the fourth-order Runge-Kutta numerical integration.
Smaller increment ‘sizes gave the same results for normalized density
and temperature everywhere within the shock wave (through six
decimal places). The linearized Navier-Stokes equations and the
linearized Burnett equations were used to determine the initial
values for the numerical integration, starting from the assigned

value downstream

{Jl]— 1=-0.001 .
Py

Figures 3 through 6 exhibit the normalized density profiles

and normalized temperature profiles for M, = 1.5 and M. = 2.0,

1 1
Additional results for the Navier-Stokes normalized density profile
at higher Mach numbers are given in the next section. The Navier-

Stokes equations were integrated numerically by other authors many

W % s
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Figure 3 - Gas density profiles in a normal shock wave (M, = 1.5)
based on the numerical integration of the Navier-Stokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized density

Burnett normalized density
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Figure 4 - Gas density profiles in a normal shock wave (M, = 2.0)
based on the numerical integration of the Navier-Stokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized density

Burnett normalized density
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Figure 5 - Gas temperature profiles in a normal shock wave (M, =1.5)
based on the numerical integration of the Navier~S%okes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized temperature

Burnett normalized temperature
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Figure 6 -

Gas temperature profiles in a normal shock wave (M.=2.0)
based on the numerical integration cf the Navier-Stokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized temperature

Burnett normalized temperature
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years ago, but (as mentioned in Chapter I) the Burnett equations
have not been integrated numerically before.

Figure 7 shows the Mach number dependence of the distance
from the center of the normalized temperature profile to the center
of the normalized density profile (the former 1s always upstream
relative to the latter).

As Figures 3 through 7 indicate, there are definite differ-
ences between the Navier-Stokes shock structure and the Burnett

shock structure, even for M.<2; the difference in Mach number

1
dependence of the separation of the profiles 1s particularly
conspicuous. The differences in the profiles themselves are accen-
tuated in plots of the asymmetry quotients (introduced in Chapter I)
as functions of Mach number, as shown in Figure 8 and Figure 9.

The results of this section suggest that the attention of
experimentalists should be directed toward asymmetry quotients for
temperatire profiles as well as density profiles, and toward the
separation of the profiles.

Results for the Navier-Stokes Density Profile
Based on the Methods of Numerical
Integration and Perturbation
Expansion
The success of the perturbation method, as applied to the

Navier-Stokes density profile, may be judged from the comparisons

in Figures 10 through 13. It is clear from the figures that the
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Figure 7 - Mach number (M,) dependence of the temperature-density
separation in a normal shock wave based on the numerical
integration of the Navier-Stokes and Burnett gasdynamic

differential equations
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Figure 8 - Density asymmetry quotient (0 ) versus M, based on the
numerical integration of the "Navier-Stoxkes and Burnett
gasdynamic differential equations.
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Figure 10 - Navier-Stokes density profiles in a normal shock wave

(Ml = 1.5). A comparison of density profiles based on
the methods of numerical integration and perturbation
expansion.
Numerical integration
........ Zeroth order perturbation
.......... First order perturbation
o Second order perturbation
Third order perturbation
The third order perturbation profile is indiscernible

from the numerical integration profile within the scale
of the figure.
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Figure 11 - Navier-Stokes density profiles in a normal shock wave
(M, = 2.0). A comparison of density profiles based on
theé methods of numerical integration and perturbation
expansion.

Numerical integration
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Figure 12 - Navier-Stokes density profiles in a normal shock wave
(M, = 3.0). A comparison of density profiles based on
the methods of numerical integratioa and perturbation
expansion.

Numerical integration

cvecsev... Zeroth order perturbation

First order perturbation

«—tews—e-— Second order perturbation

Third order perturbation

AT AN R T e e SRR N Ly s

B

;.4‘%'
2 el

#

PR e AP YA I e s A 2 E TS g s e 3T AT A T

L ona T U Sl iyt 0 o e i 7

el A SR T A ST I e L BRI SY £7h M B davtany

L OIS I

F B REN kﬁ:.uum; A NSl




syleq 2914 ueap [IoMXeH - H&\N

82

0°9 0"y 0°¢ 0°0 0°¢- 0° v 0°9-
i 1 i 1 i f

7

A s sy

sdozaie b




83

Figure 13 ~ Navier-Stokes density profiles in a normal shock wave
(M, = 4.0). A comparison of density profiles based on
thé methods of numerical integration and perturbation

expansion.
Numerical integration
. ) veveesss.. Zeroth order perturbation
? ___ _______ First order perturbation
s —«—»+—_ Second order perturbation
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successive approximations of the perturbation method are converging
toward the Runge-Kutta result. The agreement between the pertur-
bation results and numerical integration is satisfactory for the
lower Mach numbers throughout the profile, but it would be desirable
to know the perturbation results to another order or two for the
higher Mach numbers to do justice to the upstream portion of the
prcfile.

The convergence of the perturbation results toward the Runge-
Kutta result is also manifested in plots of the asymmetry quotient,
as shown in Figure 14.

Results for the Burnett Density Profile Based
on the Methods of Numerical Integration
and Perturbation Expansion

The results of the perturbation method, as applied to the
Burnett density profile, are compared with the Runge-Kutta results
in Figures 15 and 16. Figures 17 and 18 give the perturbation
results for Mach numbers beyond the range of appiicability of
numerical integration, Figure 19 contains a comparison between the
asymmetry quotient as determined by numerical integration (up to
Mlé 2), and the assymmetry quotient as determined by perturbation
expausion."L

Figures 15 and 16 show, as in the case of Navier-Stokes

equations, that the perturbation results are converging toward the

'Since Réo) is symmetric yielding Qp= 1 for all Mach

numbers, these results have been omitted from all plots of the
asymmetry quotient.
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¥-qure 14 - Density asymmetry quotient (Q_ ) versus M. from the Navier-
Stokes perturbation expansion. A compar}son of the results
for Q based on the methods of perturbation expansion and
numergcal integration.

.. _ Numcrical integration
First order perturbatilon expansion
___Second order perturbation expansion

Third order perturbation expansion
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Figure 15 - Burnett density profiles in a normal shock wave (M, = 1.5).

A comparison of density profiles based on the methods of
numerical integration and perturbation expansion.

Numerical integration

__ First order perturbation

___ Second order perturbation

___ Third order perturbation

The third order perturbation profile is indiscernible from
the numerical integration profile within the scale of the
figure,
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Figure 16 - Burnett density profiles in a normal shock wave (M1 = 2.0).
A comparison of density profiles based on the methods of
numerical integration and perturbation expansion,

___ Numerical integration
_____ First order perturbation

._~ﬂ__"___Second order perturbation

______ Third order perturbation
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Figure 17 - Burnett density profiles in a normal shock wave (M, = 3.0),
A comparison of density profiles determined from the

perturbation expansion.

___ First order perturbation

Second order perturbation

Third order perturbation
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Figure 16 - Burnett density profiles in a normal shock wave (M, = 4.0).
A comparison of density profiles determined from the

perturbation expansion.
__ First order perturbation

— g

__ Second order perturbation

Third order perturbation
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Runge-Kutta result., This conclusion is tempered, but not vitiated,
by the comparison of asymmetry quotients in Figure 19, which
likewise indicate a tendency toward convergence.
Intuitively Trustworthy Parts of the Results
for the Density Profile through Super-

Super-Burnett Order Based on the

Method of Perturbation Expansion

The Chapman-Enskog development provides a criterion for
identifying the trustworthy parts of predictions of the Navier-
Stokes or higher orde: gasdynamic equations. Predictions of the
Navier-Stokes equations may be trusted only through first order in
the mean free path, because the Burnett contributions to the stress
and heat flux are of second order in the mean free path. Similarly,
predictions of the Burnett equations may be trusted only through
second order in the mean free path, because the Super-Burnett con-
tributions to the stress and heat flux are of third order in the
mean free path, etc.

In the previous chapter it was pointed out that the pertur-
bation expansion may be applied with equal justification to all the
higher order gasdynamic equations through Super-Super-Burnett order,
and presumably this feature persists to all orders of the Chapman-
Enskog development. Accordingly, the results of a particular order
of the perturbation expansion may be regarded as trustworthy only
if they are unaffected by additional Chapman-Enskog contributions

to the stress and heat flux. Thus, the Navier-Stokes result for

2 (0 (1) 2@ 4 g ®
P Y

is trustworthy, but Rp ,

are not trustworthy
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because they are modified by the inclusion of Burnett (and higher
Chapman-Enskog order) contributions to the stress and heat flux.
Likewise, the Burnett results for Réo) and Rél) are trustworthy,
but Réz) and RéB) are not trustworthy, etc.
According to the viewpoint explained in the preceding two
paragraphs, the trustworthy part of the Super-Burnett result for

the density profile is
R(O) + € R(l) + € R(z)
p () P
and the trustworthy part of the Super-~Super-Burnett result is
R(O) +c R(l) + EZR(Z) + €3R(3)
% p p p

These trustworthy parts of the predictions of the density profile
are exhibited in Figures 20 through 23, and the corresponding results
for the asymmetry quotient are exhibited in Figure 24. The trust-
worthy parts of the Navier-Stokes and Burnett calculations have been
omitted from Figures 20 through 24 to avoid undue cluttering of the
figures, but the Navier-Stokes numerical integration results have
been included to provide an indication of the magnitude of higher
order Chapwman~Enskog effects. These figures may be said to provide
a hint that extremely high orders of the Chapman-Enskog development

will not be required for a satisfactory theory of shock structure.
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Figure 20 -

Super-Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M, = 1.5). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.

_______ Navier-Stokes numerical integration

e < ___. Second order Super-Burnett perturbation

Third order Super-Super-Burnett perturbation
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Figure 21 -~ Super-Burnett and Super-Super-Burnett density profiles

in a normal shock wave (M, = 2.0). A comparison of the
trustworthy parts of the perturbation results for Super-

Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.,

_______ Navier-Stokes numerical integration
v .. __. Second order Super-Burnett perturbation

____Third order Super-Super-Burnett perturbation
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Figure 22 - Super-Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M, = 3.0). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results,

Navier-Stokes numerical integration

Second order Super-Burnett

——y —— § ———

Third order Super-Super-Burnett
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Figure 23 - Super-Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M, = 4.0). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.,

______ Navier-Stokes numerical integration

. ___.Second order Super-Burnett

Third order Super-Super-Burnett
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I'igure 24 -

Density asymmetry quotient (Q ) versus M, from the Super-
Burnett and Super-Super—Bu*ne%t perturbation expansions.
A comparison of the trustworthy parts of the perturbation
results for Super-Burnett and Super-Super-Burnett expan-
sions with Navier-Stokes numerical integration results.

Navier-Stokes numerical integration

. Second order Super-Burnett perturbation

_ _ Third order Super-Super-Burnett perturbation
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CHAPTER VI
COMMENTS AND OUTLOOK

The general pattern among the numerical coefficients in the
perturbation results derived in the preceding chapters may be
obtained from the differential equation

d

R
o_ o 2 12 3
_—C Rp [Rp] + Al [Rp] Al [Rp] [
)] 3 4\ 2
+ AZ[RDJ +AgIR 1T+ AR 1 e

2 3 4 50 3
+A5[Rp] +A6[Rp] +A7[Rp] +A8[Rp] e + (VI-1)

and the algebraic relation
R,=R_+(A - €
-5, [

2 3\ 2
+ <A10 Rp+ All Rp + AlZ Rp £

2 3 4\ 3
+
<A13 Ro ¥ A4 Ro| AIS[R + Al6[Rp] ¢

2 3 4 5\ 4
+ %A” Rp + AlS[Rp] + Al9 [Rp] + AZO[RQ] + AZI[RQ] € +

(V1-2)
by expanding Rp and RT in powers of €. This observation constitutes
an explanation or interpretation of the general pattern. The
first-order differential equation (VI-1) is in terms of the unex-

panded normalized density Rp and may be integrated using standard

Runge-Kutta numerical integration methods. The normalized
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temperature profile may then bé determined from the algebraic

equation (VI-2) relating RT and RD.

In carrying out the algebraic determination of the RT(J)
for an expansion of K, in which the numerical values of the coeffi-~

cients were unspecified

Pra,y
K =
2 UZMZ

€2+a €3+a€4+.o~oo (VI—3)

e +a, 3 4

it was found that all of the terms containing the expansion coef-
ficients (ai) cancel during the calculation. Thus, the final rela-

tionship (VI-2) between R,, and Rpis independent of the choice for

T
Koo This is a satisfying result because RT should be uniquely

determined by Rp’ assuming each is a monotonic function of z,

quite independent of any reciprocal length scale k

&)
P

9 Also, in the

analytic expression for the R , 1t turns out that the ay are
uniquely determined for each set of the gasdynamic equations from

ég) be bounded throughout the

the requirement that the ratio Réj)/R
shock wave for each (j). In order for this ratio ro be finite, the
oy must have the values as specified in Table I for each of the
gasdynamic developments.

The upstream~downstream symmetry observed in the basic
gasdynamic differential equations leads to interrelationships
among the perturbation coefficients An in (VI-1). Since formally
equivalent expansions for dRoldz may be obtained based on (Mg-l)

2
and K, or (Mi—l) and SE and since the expansions must represent

one and the same differential equation for Rp, roughly half the
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TABLE I
COEFFICIENTS al FOR KZ
Super-Super-
oy Navier-Stokes Burnett Super-Burnett Burnett
o 3 3 3 3
7 7 7 7
o 9 102 102 102
2 T3 3 3 3
2(7) 2(7) 2(7) 2(7)
o, 369 4194 14190 14190
5 PN - 5 PN
4(7) 4(7) 4(7) 4(n
o, _ 13509 291234 _ 1123053 1058952
8(n)’ 8(7)’ 8(n’ 8(7)’
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coefficients in each order of € are determined by the other half
(and coefficients from lower orders of ¢).

The consequences of upstreamrdownstreéﬁ symmetry indicate
that it may be possible to extend the perturbation results to higher
order in € with somewhat less labor than was expended in this
report.

All profile and asymmetry data calculated in this report.
have been for Maxwell molecules, for which the viscosity-temperature
relation is p«T. Numerical integration results for the Navier-
Stokes gasdynamic equations may also be obtained for more realistic
intermolecular potentials by using the viscosity-temperature
relation uaTw, where w 1s fractional, For purposes of these final
remarks, the Navier-Stokes results for a realistic potential
(u¢T0'68) have been calculated and are compared with recent experi-
mental data and perturbation results for Maxwell molecules in
Figure 25,

The perturbation results for the asymmetry in the density
profile in = Maxwell gas, although based on an idealized molecular
model, resemble the trend of discrepancy between current experimental
results and the quantitatively incorrect Navier-Stokes results.

it seems reasonable to hope that use of a more realistic
potential model, together with an extension of the perturbation
method to one or perhaps two additional orders, might lead to
definitive checks on the nonlinear features of the Boltzmann
¢ llision operator, especially in view of the inadequacy of the

Navier-Sto<es equations even for low Mach numbers.
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a 1.3 //

Density Asymmetry Quotient - Q

Figure 25 - Density asymmetry quotient (Q ) in a normal shock wave
as a function of upstream Macg number (M.). A comparison
of Navier-Stokes numerical integration (realiscic poten-
tial) and third order perturbation (Maxwell molecules)
results with experiment.
e+ — . Navier-Stokes numerical integration

__ ___ Navier-Stokes third order perturbation

__ Super-Super-Burnett third order perturbation

O) Experiment - Alsmeyer (1975)

Z& Experiment - Schmidt (1969)
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APPENDIX A
THE MAXWELL EIGENFUNCTIONS
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The eigenfunctions‘l’r éZ) used in the moment calculations
»

of Chapter II are formed from associated Laguerre polynomials

L§+l/2(c2) and zonai harmonics cg PQ(SZ),f
+
@ = L2 (B Frey (A-1)

The associated Laguerre polynomials may be determined from the
generating function

2 t

¢

1-t
e

(1-t) 372

24+1/2
T

L (c?) tf (A-2)

oe~18

r:
and the Legeundre polynomials Pn(x) may be determined from

Rodrigues' formula

n
P (x) = —4— S| 21| | (A-3)
n 2™t 4™

The Maxwell eigenfunctions needed in this effort together

with their associated eigenvalues, €. o are given in Table II.

2
b
In Table IT, 57 is a pure number which has been defined

in Chapter II.

Useful relations among the Yo 2(2) are listed below:

b

> ->
c, VO’O(C) = Wo’l(C); (A-4)

c, Yr’o(c) = r,l(C) - r"_1’1(c), r>1; (A-5)

TWe agopt the cgnvention that A denotes a unit vector
parallel to A for any A.

s -

* e

RV \"g" .
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+ _ _2 1 > >
¢z 0,0 (®) = 74 [“ 2]“’0,51—1 (€ =¥ 10
P 2Ly @, 213 (a-6)
20+ 0,041 ¢ A2
2y = X 1 2y - s
c, Wr,z(c) S [r + 2+ Z]Wr,z—l(c) (r+1) Wr+1,2—l‘c)
241 -+ -
2ot Ve, 0419 - Ypog g (0 s (A-7)

—3—3; Yo o @ = 2y @, (4-8)




APPENDIX B
ROOTS OF THE CHARACTERISTIC POLYNOMIALS
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The Mach number dependent length scales alluded to in

Chapters III and IV {in conjunction with the linearization of the

gasdynamic differential equations) may be determined by soiving

for the roots of the characteristic polynumials which are obtained

as a result of the linearization process. The characteristic

UM
S a Ky given below, containing the Mach
©134

as a parameter, were so obtained.

polynomjals in Ly =

number Mi

NAVIER-STOKES:
20 LT + (9 23Mi) L, + 6 (M) -1) =0 (B-1)

BURNETT:

2

4 3
- +
70 Li 180 Li 291 Mi Li

+ [81 - 207 Mi] e Ly + 54 ) (1-1) = 0 (8-2)

SUPER-BURNETT:
6 5 2 .4
7850 Li + 29160 Li - 28980 Mi Ly

+[ 20475 M* - 5427 Mz] Li - 36(291) Mi Li

i i

6 4
+{ 36(207) Mi - 36(81) Mi] Ly

, 61211 2 -
- 54(36) My [Mi—l] =0 (B-3)

BN SR R
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SUPER~SUPER-BURNETT :

328399(625)L§ - 200(63)(521)LZ

2 4 2 .5

+ 6300(3791)Mi L; = 40(81)(49) (59)M; Ly

+350(27)(2287)Mi Li -

How

54(49)M§[ 227smi - 60%1;
6 .2 6 2
+ 8(49) (81) (97)M; Ly - 8(49) (243)M; [23M1 - 9] Ly
1
+ 16(49)(729)M§ ﬁé - ﬂ =0 . (B-4)

The roots of each characteristic polynomial far upstream
(Ll) or far downstream (LZ) may be determined for any selected
upstream Mach number (Ml) or its corresponding Rankine-Hugoniot
downstream Mach number (MZ) using standard computer library routines.
The results given in the tables and figures which follow were
computed to twelve decimal accuracy.

Figures 26, 27, 28, and 29 present plots of the results for
Ll versus Ml and L2 versus M1 as determined from computer solutions
of equations (B-1), (B-2), (B-3), and (B-4), respectively. The real
Li and the real parts of the complex Li are plotted as solid lines
and the imaginary parts of the complex Li are plotted as broken lines
in the figures. The corresponding real and imaginary parts of the
conjugate pairs are appropriately identified in each figure.

The physically significant roots Ky which provide appro-

priate length scales for each of the gasdynamic developments, are

presented for a range of upstream Mach numbers in Table III
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TABLE III
PHYSICALLY SIGNIFICANT K,

Super-Super:-
M1 Naiver-Stokes Burnett Super-Burnett Burnett
1.1 -0.07167793 -0.06685100 -0.06633523 -0.06612403
1.2 -0.12285635 -0.10793995 -0.10594205 -0.10447577
1.3 -0.16089605 -0.13425755 -0.13066329 -0.12708902
1.4 -0.19005288 -0.15164829 -0.14673941 -0.14077175
1.5 -0.21295431 -0.16341863 -0.15753600 -0.14923111
1.6 -0.23130542 -0.17153184 -0.16496566 ~0.15452634
1.7 -0.24625774 -0.17720053 -0.17017150 -0.15784456
1.8 -0.25861475 -0.18119856 -0.17386660 -0.15989620
1.9 -0.26895253 -0.18403361 -0.17651194 -0.16112073
2.0 -0.27769376  -0.18604662 -0.17841433 -0.16179769
2.1 -0.28515479 -0.18747177 -0.17978304 -0.16210907
2.2 -0.29157651 -0.18847010 -0.18076370 -0.16217567
2.3  -0.29714518 -0.18915860 -0.18145944 -0.16207889
2.4 -0.30200677 -0.18961924 -0.18194438 -0.16187431
2.5 -0.30627706 -0.18991189 -0.18227243 -0.16160018
2.6  -0.31004889 -0.19008036 ~-0.18248322 -0.16128305
2.7 -0.31339746 -0.19015700 -0.18260620 -0.16094136
2.8 -0.31638419 -0.19016%84 ~0.18266339 -0.16058798
2.9 -0.31905971  -0.19012490 -0.18267137 -0.16023179

3.0 -0.32146603 -0.19004769 -0.18264270 -0.15987893
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TABLE III (continued})

Super-Super-

Ml Naiver-Stokes Burnett Super-Burnett Burnett

3.1 -0.32363828 -0.18994443 ~-0.18258696 —0.15953354-
3.2 -0.32560601 -0.18982285 ~0.18251144 -0.15919835
3.3  -0.32739421 -0.18968880 -0.18242175 -0.15887508
3.4 -0.32902418 ~-0.18954675 -0.18232219 -0.15856475
3.5 -0,.33051415 ~-0.18940005 -0.18221604 -0.15826785
3.6 -0.33187970 -0.18925125 -0.18210585 -0.15798450
3.7 -0.33313441 -0.18910227 ~0.18199355 ~-0.15771459
3.8 -0.33428998 ~0.18895455 ~0.18188062 ~-0.15745783
3.9 -0.33535662 ~-0.18880913 ~-0.18176819 -0.15721379
4,0 -0.33634327 ~0.18866679 -0.18165710 -0.15698200
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APPENDIX C

GENERAL FORM OF THE EQUATIONS FROM THE PERTURBATION DEVELOPMENT
AND GENERAL FORMOF THE SOLUTIONS TO THE DIFFERENTIAL EQUATIONS

FOR THE NORMALIZED DENSITY

i
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The perturbation metiiods applied in each of the gasdynamic
developments of Chapter II produce a set of first order linear
differential equations for the perturbed density constributions
Réo), Rél), Réz), Ré3), etc., and a set of algebraic relationships
for the perturbed temperature contributions Réo), Rél), Réz), RéB),
etc., in terms of the perturbed densities. Tn the course of the
perturbation calculations, a pattern in the analytical results
recurred in each of the gasdynamic developments.

Thus, the perturbation equations for the normalized density

and temperature, applicable to any of the gasdynamic developments,

are of the following general form:

0)
dr 2
© J.@]% _
aw %o ‘[Rp ] ; (c-1)
1)
dr . 2 3
Ro | (0)) (1) ]2, @] . i
T [1 2R } NI [Rp ] Al[Rp ] ; (C-2)
2)
R [1 2R<o>] (@2 gD - 3 [ 2w _[pw]?
dz [0 11p p o

+

2
(0) 0) (0) .
[ ] [ ] + AA[ ] 3 (c=3)
dR(3)

p_ . [1 2R<0)] e Dpn 2 @@y, [L@] 2@ pp @)
g P % "p LY % PP

+

[ an O D) Py (0,0 o P
RQ 3A1Rp [RQ J +2A.R Rp +3A3 Rp Rp

Alt 2Ro

13 . Lo ? ©)] 3 1% 1°.
+ 4A4[ o ] Rp +A4%p } +A6[Rp ] +A7 Rp +A8 Rp H

(C-4)
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@ -2 ® (c-5)
D - (1)+A9[1 R(o>] © (c-6)
NOJNON A9[1 2R(o>] D1y 1 +Al‘HO) ] +A1{Réo) ]3 ;
-7
RSP = r D [1 ZR(O)] (2)+A10Rél)+2A11R‘§0)Rél)+3A Z[Réo)] ZRéI)

2 4
NN ORI RS (o) of* .

(C-8)

2
(0);(2) g0 7 (2)
240 R0 R +3A12{ 0 ]Rp

e 2
3
+Aj4R (l)+2A R(O (l)+3A l (0)} (1)+4A6[ (0)] R(l)
p p

)

(0)] 3) a5
1

- 24y [1-20
7\

1~

147p D Y e P

9 127p 17 p

3 4 ’ 5
0) (0) (0)
+ AIQ[RD ] +A24%p ] +A24F0 ] . (€-9)

The coefficients An determined in each of the gasdynamic

2
- (1)g(2) (1) (0) |z (1) (0) z(0)
28gR 7R +A11[ } +3A_ R [ N ] +A R +A18[ ]

developments are listed in Table IV.
(l) r(2)

o * R
Ré3), etc., may be expressed as functionals of the quantity

(0]
(1—Rp

The solution of the differentjal equations for R

)+ In each instance, the differential equations can be arranged
in the form

dR(n)

b (0)_ (n) _ ;(n) _
Tt [2Rp 1] RV =1, (c-10)
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An equivalent expression for (C-10) is

. Rén) I(n)
T\ O on( " IO O] (€-11)
R, [1Rp ] RS [1 RS ]
or
g
4o N 4@ @-Réoq . (c-12)

dg RéO)[l_RéO)] T dg

Using the chain rule to obtain the functional F(n)[l—Réo)]
from
(n)
m ) [1—Ré°)] - - - pcE (c-13)
- ) 0)
0 [1—Rp ] [Rp ]
yields
@[, . () f 0) 1)
F 1-R> =~ [d]1-R : . (C~14)
P p y 2

9
[I-R(O)] {R(O]
¢ P
{
With F‘n)[l—Réo)] known, both sides of equation (C-12) are exact
differentials and may be integrated to yield Rén) with the inte-

gration constant determined from the conditions that at g = 0,

R(n) =1 8n0 where 6n0 is the Kronecker delta.

o 2
For exam; ., the differential equation for R(l) is
ar{D 2
ooy Z[R(O)_l]R(l) . 1_R(0)] [R(o>] , (c-15)
dg P p 1 p p
The results for I(l) and F(l)[l-RéO) are
2
1D . Al<l -[ 12 (@] > [l—R(O)] (C-16)
o | [

and

. r. (0
djl-R
F(l) l"R(G = - A l__‘Q__J' (C—l7)
P 1 [1_R(0)]
p
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6,
o)

Thus, using (C-17) in (C-12) and integrating, the result is

(1) - g0}, (0 (0) c
Ry = Ry [1 R ] - Ayfn {1—11p ]+Q1 ’ (C-18)

where Q1 is an integration constant.

i l"“‘»‘!“"*:'fzéf’, s

Evaluating Q1 from the
boundary conditions on r(® and Rél) at ¢ = 0 yields

1

The differential equations for R(z) and Ré3) may be solved

using the same procedures described above. The solutions are given

in equations (III-53) and (III-54).

The differential equation for
(0)
RD

can be integrated without using this method. The result for

Réo) is given in equation (I1I-42).

Since the differential equations for the R(j) have the same

general form for each gasdynamic development, the solutions for the
Rén) may also be expressed in a general form. The coefficients
of the integrated results are functions of the original An' The

results for Réo) and Rél) are relatively simple, However, the

coefficients in Réz) and Ré3) are much more involved, namely

(2) _ p(0)f . x(0) _o(0) o0

Rp Rp [1 Rp ] Bl[l Rp ]+ Bzﬁn[l Rp 1
(0 (0 2 0)
+B3[1-Rp 12:1[1-1(0 1 + Baf,n [1—1{p ]

+B5 [1—R‘()01 5Ln2 [1-Réo)1 + Q2 (C~29)

and

Asy o -
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- e e SRRSO

3) _ ©f, (0 (0 _(0)
Rp Rp [1 Rp ] Cl[l-Rp ] +C22,n[l Rp ]

(0) (0 2}, _(0)
+C3[1-Rp ]zn [1—1{p 1 +Cy fn [1—Rp ]

- .
+C5 l—R(O) 2112 [l—R(O)] +C ln3[1-R(O)]
0 ] I 6 o

-

r -3 2 2
(0) (0) (0

2
_»(0) 2|;_g€0) _r O , 31, _p(0)
+C9Ll R J fn [1 R ]+ Clo[l R) ]Q,n [1 R ]

2
) 3 (0)
+cll [l_Ro ] n [1—11p ]+ Q3 . (c-21)

The results for the coefficients Bn and Cn are presented in Tables

V and VI respectively.
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TABLE VI

COEFFICIENTS Cn FOR R(3)
p

3 2
+ 2808, - Apm 3Ag + (247 + Ay ¥ 4A)Q

A4, + 4y 143 = Ay 3hg

4
+AQ2-AQ + 2Q,Q
171 172 172

Ag *+ 20, + 3Ag + (-Ay-24,)0; + AQ,

-2A3 - 2A.A, - 6A A, + (—3A§ + 2A

1 173 174 3

2
Ay + 20A, + 1/287G)

3 2
3/2A] - 28)A4- 4AjA,- 3ATQy
3 ) 02 _ioa 02 4+ 03
/28] + 1/28g + (-2A7 =~ 34,)Q, - 5/24,Q] + Q
283+ 3aa, +5a%0. - 3A.Q°
1 R S T B |

3 2
-5/207 + 3857Q)
3
—1/6Al
3
A
1

3
—Al
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E> ;1
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